UM171 suppresses breast cancer progression by inducing KLF2

Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY (2018) Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. https://doi.org/10.1155/2018/5416923

Article  PubMed  PubMed Central  Google Scholar 

Sampieri K, Fodde R (2012) Cancer stem cells and metastasis. Semin Cancer Biol 22(3):187–193. https://doi.org/10.1016/j.semcancer.2012.03.002

Article  CAS  PubMed  Google Scholar 

Fares I, Chagraoui J, Gareau Y, Gingras S, Ruel R, Mayotte N, Csaszar E, Knapp DJ, Miller P, Ngom M, Imren S, Roy DC, Watts KL, Kiem HP, Herrington R, Iscove NN, Humphries RK, Eaves CJ, Cohen S, Marinier A, Zandstra PW, Sauvageau G (2014) Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345(6203):1509–1512. https://doi.org/10.1126/science.1256337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen S, Roy J, Lachance S, Delisle JS, Marinier A, Busque L, Roy DC, Barabé F, Ahmad I, Bambace N, Bernard L, Kiss T, Bouchard P, Caudrelier P, Landais S, Larochelle F, Chagraoui J, Lehnertz B, Corneau S, Tomellini E, van Kampen JJA, Cornelissen JJ, Dumont-Lagacé M, Tanguay M, Li Q, Lemieux S, Zandstra PW, Sauvageau G (2020) Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematol 7(2):e134–e145. https://doi.org/10.1016/s2352-3026(19)30202-9

Article  PubMed  Google Scholar 

Fares I, Chagraoui J, Lehnertz B, MacRae T, Mayotte N, Tomellini E, Aubert L, Roux PP, Sauvageau G (2017) EPCR expression marks UM171-expanded CD34(+) cord blood stem cells. Blood 129(25):3344–3351. https://doi.org/10.1182/blood-2016-11-750729

Article  CAS  PubMed  Google Scholar 

Subramaniam A, Žemaitis K, Talkhoncheh MS, Yudovich D, Bäckström A, Debnath S, Chen J, Jain MV, Galeev R, Gaetani M, Zubarev RA, Larsson J (2020) Lysine-specific demethylase 1A restricts ex vivo propagation of human HSCs and is a target of UM171. Blood 136(19):2151–2161. https://doi.org/10.1182/blood.2020005827

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chagraoui J, Girard S, Spinella JF, Simon L, Bonneil E, Mayotte N, MacRae T, Coulombe-Huntington J, Bertomeu T, Moison C, Tomellini E, Thibault P, Tyers M, Marinier A, Sauvageau G (2021) UM171 preserves epigenetic marks that are reduced in ex vivo culture of human HSCs via potentiation of the CLR3-KBTBD4 complex. Cell Stem Cell 28(1):48–62. https://doi.org/10.1016/j.stem.2020.12.002

Article  CAS  PubMed  Google Scholar 

Hu A, Gao J, Varier KM, Gajendran B, Jiang F, Liu W, Wang C, Xiao X, Li Y, Zacksenhaus E, Ali S, Ben-David Y (2022) UM171 cooperates with PIM1 inhibitors to restrict HSC expansion markers and suppress leukemia progression. Cell Death Discov 8(1):448. https://doi.org/10.1038/s41420-022-01244-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15(9):494–501. https://doi.org/10.1016/j.tcb.2005.07.004

Article  CAS  PubMed  Google Scholar 

Agboyibor C, Dong J, Effah CY, Drokow EK, Pervaiz W, Liu HM (2021) LSD1 as a biomarker and the outcome of its inhibitors in the clinical trial: the therapy opportunity in tumor. J Oncol. https://doi.org/10.1155/2021/5512524

Article  PubMed  PubMed Central  Google Scholar 

Ravasio R, Ceccacci E, Nicosia L, Hosseini A, Rossi PL, Barozzi I, Fornasari L, Zuffo RD, Valente S, Fioravanti R, Mercurio C, Varasi M, Mattevi A, Mai A, Pavesi G, Bonaldi T, Minucci S (2020) Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid-induced differentiation. Sci Adv 6(15):2746. https://doi.org/10.1126/sciadv.aax2746

Article  CAS  Google Scholar 

Wu N, Chen S, Luo Q, Jiang Z, Wang X, Li Y, Qiu J, Yu K, Yang Y, Zhuang J (2022) Kruppel-like factor 2 acts as a tumor suppressor in human retinoblastoma. Exp Eye Res 216:108955. https://doi.org/10.1016/j.exer.2022.108955

Article  CAS  PubMed  Google Scholar 

Li J, Jiang JL, Chen YM, Lu WQ (2023) KLF2 inhibits colorectal cancer progression and metastasis by inducing ferroptosis via the PI3K/AKT signaling pathway. J Pathol Clin Res 9(5):423–435. https://doi.org/10.1002/cjp2.325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li XM, Hu SJ, Liu JF, Ma MJ, Du LM, Bai FH (2023) Krüppel-like factor 2 is a gastric cancer suppressor and prognostic biomarker. Evid-Based Complement Altern Med: eCAM. https://doi.org/10.1155/2023/2360149

Article  Google Scholar 

Liu CY, Chang TH, Hsieh CH, Chang YH, Pang JS, Chuang CK (2022) Kruppel-like factor 2 inhibits proliferation in renal angiomyolipoma via IL-6/JAK/STAT3 signaling pathway. Anticancer Res 42(10):4753–4762. https://doi.org/10.2187/anticanres.15980

Article  CAS  PubMed  Google Scholar 

Gao J, Hu J, Yu F, Wang C, Sheng D, Liu W, Hu A, Yu K, Xiao X, Kuang Y, Zacksenhaus E, Gajendran B, Ben-David Y (2023) Lovastatin inhibits erythroleukemia progression through KLF2-mediated suppression of MAPK/ERK signaling. BMC Cancer 23(1):306. https://doi.org/10.1186/s12885-023-10742-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu KY, Tian Y, Li YX, Meng QX, Ge J, Cao XC, Zhang T, Yu Y (2022) The functions and prognostic value of Krüppel-like factors in breast cancer. Cancer Cell Int 22(1):23. https://doi.org/10.1186/s12935-022-02449-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, Sample KM, Gajendran B, Kapranov P, Liu W, Hu A, Zacksenhaus E, Li Y, Hao X, Ben-David Y (2021) FLI1 induces megakaryopoiesis gene expression through WAS/WIP-dependent and independent mechanisms; implications for wiskott-aldrich syndrome. Front Immunol 12:607836. https://doi.org/10.3389/fimmu.2021.607836

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crown J, O’Leary M, Ooi WS (2004) Docetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experience. Oncologist 9(2):24–32. https://doi.org/10.1634/theoncologist.9-suppl_2-24

Article  CAS  PubMed  Google Scholar 

Kunder R, Velyunskiy M, Dunne SF, Cho BK, Kanojia D, Begg L, Orriols AM, Fleming-Trujillo E, Vadlamani P, Vialichka A, Bolin R, Perrino JN, Roth D, Clutter MR, Zielinski-Mozny NA, Goo YA, Cristofanilli M, Mendillo ML, Vassilopoulos A, Horiuchi D (2022) Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chem Biol 29(3):358–372. https://doi.org/10.1016/j.chembiol.2021.08.011

Article  CAS  PubMed  Google Scholar 

Landor SKJ, Santio NM, Eccleshall WB, Paramonov VM, Gagliani EK, Hall D, Jin SB, Dahlström KM, Salminen TA, Rivero-Müller A, Lendahl U, Kovall RA, Koskinen PJ, Sahlgren C (2021) PIM-induced phosphorylation of Notch3 promotes breast cancer tumorigenicity in a CSL-independent fashion. J Biol Chem 296:100593. https://doi.org/10.1016/j.jbc.2021.100593

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao W, Qiu R, Li P, Yang J (2017) PIM1: a promising target in patients with triple-negative breast cancer. Med Oncol 34(8):142. https://doi.org/10.1007/s12032-017-0998-y

Article  CAS  PubMed  Google Scholar 

Sawaguchi Y, Yamazaki R, Nishiyama Y, Mae M, Abe A, Nishiyama H, Nishisaka F, Ibuki T, Sasai T, Matsuzaki T (2021) Novel pan-pim kinase inhibitors with imidazopyridazine and thiazolidinedione structure exert potent antitumor activities. Front Pharmacol 12:672536. https://doi.org/10.3389/fphar.2021.672536

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rajan AM, Kumar S (2016) New investigational drugs with single-agent activity in multiple myeloma. Blood Cancer J 6(7):e451. https://doi.org/10.1038/bcj.2016.53

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brasó-Maristany F, Filosto S, Catchpole S, Marlow R, Quist J, Francesch-Domenech E, Plumb DA, Zakka L, Gazinska P, Liccardi G, Meier P, Gris-Oliver A, Cheang MC, Perdrix-Rosell A, Shafat M, Noël E, Patel N, McEachern K, Scaltriti M, Castel P, Noor F, Buus R, Mathew S, Watkins J, Serra V, Marra P, Grigoriadis A, Tutt AN (2016) PIM1 kinase regulates cell death, tumor growth and chemotherapy response in triple-negative breast cancer. Nat Med 22(11):1303–1313. https://doi.org/10.1038/nm.4198

留言 (0)

沒有登入
gif