CRISPR/Cas9 gene editing clarifies the role of CD33 SNP rs12459419 in gemtuzumab ozogamicin-mediated cytotoxicity

Taylor VC, Buckley CD, Douglas M, Cody AJ, Simmons DL, Freeman SD. The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem. 1999;274(17):11505–12. https://doi.org/10.1074/jbc.274.17.11505.

Article  CAS  PubMed  Google Scholar 

Legrand O, Perrot JY, Baudard M, Cordier A, Lautier R, Simonin G, et al. The immunophenotype of 177 adults with acute myeloid leukemia: proposal of a prognostic score. Blood. 2000;96(3):870–7.

Article  CAS  PubMed  Google Scholar 

Jilani I, Estey E, Huh Y, Joe Y, Manshouri T, Yared M, et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol. 2002;118(4):560–6. https://doi.org/10.1309/1WMW-CMXX-4WN4-T55U.

Article  PubMed  Google Scholar 

Sievers EL, Larson RA, Stadtmauer EA, Estey E, Lowenberg B, Dombret H, et al. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol. 2001;19(13):3244–54. https://doi.org/10.1200/jco.2001.19.13.3244.

Article  CAS  PubMed  Google Scholar 

Castaigne S, Pautas C, Terre C, Raffoux E, Bordessoule D, Bastie JN, et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet (London, England). 2012;379(9825):1508–16. https://doi.org/10.1016/s0140-6736(12)60485-1.

Article  CAS  PubMed  Google Scholar 

Appelbaum FR, Bernstein ID. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood. 2017;130(22):2373–6. https://doi.org/10.1182/blood-2017-09-797712.

Article  CAS  PubMed  Google Scholar 

Lamba JK, Pounds S, Cao X, Downing JR, Campana D, Ribeiro RC, et al. Coding polymorphisms in CD33 and response to gemtuzumab ozogamicin in pediatric patients with AML: a pilot study. Leukemia. 2009;23(2):402–4. https://doi.org/10.1038/leu.2008.185.

Article  CAS  PubMed  Google Scholar 

Malik M, Simpson JF, Parikh I, Wilfred BR, Fardo DW, Nelson PT, et al. CD33 Alzheimer’s risk-altering polymorphism, CD33 expression, and exon 2 splicing. J Neurosci. 2013;33(33):13320–5. https://doi.org/10.1523/jneurosci.1224-13.2013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem. 2002;13(1):47–58. https://doi.org/10.1021/bc010021y.

Article  CAS  PubMed  Google Scholar 

Mortland L, Alonzo TA, Walter RB, Gerbing RB, Mitra AK, Pollard JA, et al. Clinical significance of CD33 nonsynonymous single-nucleotide polymorphisms in pediatric patients with acute myeloid leukemia treated with gemtuzumab-ozogamicin–containing chemotherapy. Clin Cancer Res. 2013;19(6):1620–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malik M, Chiles J 3rd, Xi HS, Medway C, Simpson J, Potluri S, et al. Genetics of CD33 in Alzheimer’s disease and acute myeloid leukemia. Hum Mol Genet. 2015;24(12):3557–70. https://doi.org/10.1093/hmg/ddv092.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamba JK, Chauhan L, Shin M, Loken MR, Pollard JA, Wang YC, et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: report from randomized phase III children’s oncology group trial AAML0531. J Clin Oncol. 2017;35(23):2674–82. https://doi.org/10.1200/jco.2016.71.2513.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teich K, Krzykalla J, Kapp-Schwoerer S, Gaidzik VI, Schlenk RF, Paschka P, et al. Cluster of differentiation 33 single nucleotide polymorphism rs12459419 is a predictive factor in patients with nucleophosmin1-mutated acute myeloid leukemia receiving gemtuzumab ozogamicin. Haematologica. 2021;106(11):2986–9. https://doi.org/10.3324/haematol.2021.278894.

Article  PubMed  PubMed Central  Google Scholar 

Gale RE, Popa T, Wright M, Khan N, Freeman SD, Burnett AK, et al. No evidence that CD33 splicing SNP impacts the response to GO in younger adults with AML treated on UK MRC/NCRI trials. Blood. 2018;131(4):468–71. https://doi.org/10.1182/blood-2017-08-802157.

Article  CAS  PubMed  Google Scholar 

Short NJ, Richard-Carpentier G, Kanagal-Shamanna R, Patel KP, Konopleva M, Papageorgiou I, et al. Impact of CD33 and ABCB1 single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. Am J Hematol. 2020;95(9):E225–8. https://doi.org/10.1002/ajh.25854.

Article  CAS  PubMed  Google Scholar 

Castano-Bonilla T, Barragan E, Sargas C, Sanz A, Algarra L, Herrera-Puente P, et al. No Evidence that CD33 rs12459419 polymorphism predicts gemtuzumab ozogamicin response in consolidation treatment of acute myeloid leukemia patients: experience of the PETHEMA Group. Dis Markers. 2022;2022:3132941. https://doi.org/10.1155/2022/3132941.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laszlo GS, Beddoe ME, Godwin CD, Bates OM, Gudgeon CJ, Harrington KH, et al. Relationship between CD33 expression, splicing polymorphism, and in vitro cytotoxicity of gemtuzumab ozogamicin and the CD33/CD3 BiTE(R) AMG 330. Haematologica. 2019;104(2):e59–62. https://doi.org/10.3324/haematol.2018.202069.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lamba JK, Meshinchi S. Time to reconsider CD33 single nucleotide polymorphism in the response to gemtuzumab ozogamicin. Haematologica. 2021;106(11):2796–8. https://doi.org/10.3324/haematol.2021.279043.

Article  PubMed  PubMed Central  Google Scholar 

Morishige S, Mizuno S, Ozawa H, Nakamura T, Mazahery A, Nomura K, et al. CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. Int J Hematol. 2020;111(2):225–33. https://doi.org/10.1007/s12185-019-02765-0.

Article  CAS  PubMed  Google Scholar 

Nakamura T, Morishige S, Ozawa H, Kuboyama K, Yamasaki Y, Oya S, et al. Successful correction of factor V deficiency of patient-derived iPSCs by CRISPR/Cas9-mediated gene editing. Haemophilia. 2020;26(5):826–33. https://doi.org/10.1111/hae.14104.

Article  CAS  PubMed  Google Scholar 

Perez-Oliva AB, Martinez-Esparza M, Vicente-Fernandez JJ, Corral-San Miguel R, Garcia-Penarrubia P, Hernandez-Caselles T. Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells. Glycobiology. 2011;21(6):757–70. https://doi.org/10.1093/glycob/cwq220.

Article  CAS  PubMed  Google Scholar 

Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8. https://doi.org/10.1038/bmt.2012.244.

Article  CAS  PubMed  Google Scholar 

Shaw BC, Estus S. Pseudogene-mediated gene conversion after CRISPR-Cas9 editing demonstrated by partial CD33 conversion with SIGLEC22P. CRISPR J. 2021;4(5):699–709. https://doi.org/10.1089/crispr.2021.0052.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Godwin CD, Laszlo GS, Wood BL, Correnti CE, Bates OM, Garling EE, et al. The CD33 splice isoform lacking exon 2 as therapeutic target in human acute myeloid leukemia. Leukemia. 2020;34(9):2479–83. https://doi.org/10.1038/s41375-020-0755-7.

Article  PubMed  PubMed Central  Google Scholar 

Gbadamosi MO, Shastri VM, Hylkema T, Papageorgiou I, Pardo L, Cogle CR, et al. Novel CD33 antibodies unravel localization, biology and therapeutic implications of CD33 isoforms. Future Oncol (London, England). 2021;17(3):263–77. https://doi.org/10.2217/fon-2020-0746.

Article  CAS  Google Scholar 

Siddiqui SS, Springer SA, Verhagen A, Sundaramurthy V, Alisson-Silva F, Jiang W, et al. The Alzheimer’s disease-protective CD33 splice variant mediates adaptive loss of function via diversion to an intracellular pool. J Biol Chem. 2017;292(37):15312–20. https://doi.org/10.1074/jbc.M117.799346.

Article 

留言 (0)

沒有登入
gif