Inhibition of astroglial hemichannels prevents synaptic transmission decline during spreading depression

Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–47.

Article  CAS  PubMed  Google Scholar 

Leao AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;7:359–90.

Article  Google Scholar 

Sugaya E, Takato M, Noda Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J Neurophysiol. 1975;38:822–41.

Article  CAS  PubMed  Google Scholar 

Kraig RP, Nicholson C. Extracellular ionic variations during spreading depression. Neuroscience. 1978;3:1045–59.

Article  CAS  PubMed  Google Scholar 

Pietrobon D, Moskowitz MA. Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci. 2014;15:379–93.

Article  CAS  PubMed  Google Scholar 

Seidel JL, Escartin C, Ayata C, Bonvento G, Shuttleworth CW. Multifaceted roles for astrocytes in spreading depolarization: a target for limiting spreading depolarization in acute brain injury? Glia. 2016;64:5–20.

Article  PubMed  Google Scholar 

Macvicar BA, Newman EA. Astrocyte regulation of blood flow in the brain. Cold Spring Harb Perspect Biol. 2015;7:1–15.

Article  Google Scholar 

Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain-barrier. Nat Methods. 2013;19:1584–96.

CAS  Google Scholar 

Fields RD, Stevens-Graham B. New insights into neuron-glia communication. Science. 2002;298:556–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;81:1065–96.

Article  CAS  PubMed  Google Scholar 

Charles A, Brennan K. Cortical spreading depression-new insights and persistent questions. Cephalalgia. 2009;29:1115–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walch E, Murphy TR, Cuvelier N, Aldoghmi M, Morozova C, Donohue J, et al. Astrocyte-selective volume increase in elevated extracellular potassium conditions is mediated by the Na + /K + ATPase and occurs independently of aquaporin 4. ASN Neuro. 2020;12:175909142096715.

Article  Google Scholar 

Peters O, Schipke CG, Hashimoto Y, Kettenmann H. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci. 2003;23:9888–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kunkler PE, Kraig RP. Calcium waves precede electrophysiological changes of spreading depression in hippocampal organ cultures. J Neurosci. 1998;18:3416–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basarsky TA, Duffy SN, Andrew RD, MacVicar BA. Imaging spreading depression and associated intracellular calcium waves in brain slices. J Neurosci. 1998;18:7189–99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci. 2006;26:5438–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcaggi P, Attwell D. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia. 2004;47:217–25.

Article  PubMed  Google Scholar 

Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129:1045–56.

Article  CAS  PubMed  Google Scholar 

Lucaciu SA, Leighton SE, Hauser A, Yee R, Laird DW. Diversity in connexin biology. J Biol Chem. 2023;299: 105263.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol. 2009;1: a002576.

Article  PubMed  PubMed Central  Google Scholar 

Sáez JC, Leybaert L. Hunting for connexin hemichannels. FEBS Lett. 2014;588:1205–11.

Article  PubMed  Google Scholar 

Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H. Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A. 2003;100:13644–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palacios-Prado NN, Soto PA, López X, Choi EJ, Marquez-Miranda V, Rojas M, et al. Endogenous pannexin1 channels form functional intercellular cell-cell channels with characteristic voltage-dependent properties. Proc Natl Acad Sci U S A. 2022;119: e2202104119.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yeung AK, Patil CS, Jackson MF. Pannexin-1 in the CNS: Emerging concepts in health and disease. J Neurochem. 2020;154:468–85.

Article  CAS  PubMed  Google Scholar 

Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics. 2004;83:706–16.

Article  CAS  PubMed  Google Scholar 

Giaume C, Naus CC, Sáez JC, Leybaert L. Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev. 2021;101:93–145.

Article  CAS  PubMed  Google Scholar 

Orellana JA, Stehberg J. Hemichannels: new roles in astroglial function. Front Physiol. 2014;5:193.

Article  PubMed  PubMed Central  Google Scholar 

Abudara V, Retamal MA, Del Rio R, Orellana JA. Synaptic functions of hemichannels and pannexons: a double-edged sword. Front Mol Neurosci. 2018;11:1–24.

Article  Google Scholar 

Roux L, Madar A, Lacroix MM, Yi C, Benchenane K, Giaume C. Astroglial connexin 43 hemichannels modulate olfactory bulb slow oscillations. J Neurosci. 2015;35:15339–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung G, Bataveljic D, Visser J, Kumar N, Moulard J, Dallérac G, et al. Physiological synaptic activity and recognition memory require astroglial glutamine. Nat Commun. 2022;13:753.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsambarth S, Carvajal FJ, Moraga-Amaro R, Mendez L, Tamburini G, Jimenez I, et al. Astroglial gliotransmitters released via Cx43 hemichannels regulate NMDAR-dependent transmission and short-term fear memory in the basolateral amygdala. FASEB J. 2022;36: e22134.

Article  CAS  PubMed  Google Scholar 

Tao X-D, Liu Z-R, Zhang Y-Q, Zhang X-H. Connexin43 hemichannels contribute to working memory and excitatory synaptic transmission of pyramidal neurons in the prefrontal cortex of rats. Life Sci. 2021;286: 120049.

Article 

留言 (0)

沒有登入
gif