Thomsen K, Iversen L, Titlestad TL, Winther O. “Systematic review of machine learning for diagnosis and prognosis in dermatology”, (in eng). J Dermatolog Treat. 2020;31(5):496–510. https://doi.org/10.1080/09546634.2019.1682500.
Char DS, Shah NH, Magnus D. “Implementing machine learning in health care - addressing ethical challenges,” (in eng). N Engl J Med. 2018;378(11):981–3. https://doi.org/10.1056/NEJMp1714229.
Article PubMed PubMed Central Google Scholar
Aminizadeh S, et al. “Opportunities and challenges of artificial intelligence and distributed systems to improve the quality of healthcare service”, (in eng). Artif Intell Med. 2024;149: 102779. https://doi.org/10.1016/j.artmed.2024.102779.
Zhao S, et al. “Smart identification of psoriasis by images using convolutional neural networks: a case study in China”, (in eng). J Eur Acad Dermatol Venereol. 2020;34(3):518–24. https://doi.org/10.1111/jdv.15965.
Article CAS PubMed Google Scholar
Yang Y, et al. “A convolutional neural network trained with dermoscopic images of psoriasis performed on par with 230 dermatologists”, (in eng). Comput Biol Med. 2021;139: 104924. https://doi.org/10.1016/j.compbiomed.2021.104924.
Yu Z, Kaizhi S, Jianwen H, Guanyu Y, Yonggang W. A deep learning-based approach toward differentiating scalp psoriasis and seborrheic dermatitis from dermoscopic images, (in eng). Front Med (Lausanne). 2022;9:965423. https://doi.org/10.3389/fmed.2022.965423.
Dash M, Londhe ND, Ghosh S, Shrivastava VK, Sonawane RS. “Swarm intelligence based clustering technique for automated lesion detection and diagnosis of psoriasis”, (in eng). Comput Biol Chem. 2020;86: 107247. https://doi.org/10.1016/j.compbiolchem.2020.107247.
Article CAS PubMed Google Scholar
Strober B, et al. “Recategorization of psoriasis severity: delphi consensus from the international psoriasis council,” (in eng). J Am Acad Dermatol. 2020;82(1):117–22. https://doi.org/10.1016/j.jaad.2019.08.026.
Wu AG, Conway J, Barazani L, Roy B, Cline A, Pereira F. “Is clear always clear? comparison of psoriasis area and severity index (pasi) and the physician’s global assessment (PGA) in psoriasis clearance,” (in eng). Dermatol Ther (Heidelb). 2020;10(5):1155–63. https://doi.org/10.1007/s13555-020-00435-2.
Raina A, et al. “Objective measurement of erythema in psoriasis using digital color photography with color calibration”, (in eng). Skin Res Technol. 2016;22(3):375–80. https://doi.org/10.1111/srt.12276.
Article CAS PubMed Google Scholar
Fink C, Alt C, Uhlmann L, Klose C, Enk A, Haenssle HA. “Precision and reproducibility of automated computer-guided Psoriasis Area and Severity Index measurements in comparison with trained physicians”, (in eng). Br J Dermatol. 2019;180(2):390–6. https://doi.org/10.1111/bjd.17200.
Article CAS PubMed Google Scholar
Meienberger N, et al. “Observer-independent assessment of psoriasis-affected area using machine learning”, (in eng). J Eur Acad Dermatol Venereol. 2020;34(6):1362–8. https://doi.org/10.1111/jdv.16002.
Article CAS PubMed Google Scholar
Huang K, et al. Artificial intelligence-based psoriasis severity assessment: real-world study and application (in eng). J Med Internet Res. 2023;25:e44932. https://doi.org/10.2196/44932.
Okamoto T, Kawai M, Ogawa Y, Shimada S, Kawamura T. “Artificial intelligence for the automated single-shot assessment of psoriasis severity”, (in eng). J Eur Acad Dermatol Venereol. 2022;36(12):2512–5. https://doi.org/10.1111/jdv.18354.
Article CAS PubMed Google Scholar
Aggarwal P, et al. “Clinical characteristics and disease burden in prurigo nodularis”, (in eng). Clin Exp Dermatol. 2021;46(7):1277–84. https://doi.org/10.1111/ced.14722.
Article CAS PubMed Google Scholar
Folle L, et al. "DeepNAPSI multi-reader nail psoriasis prediction using deep learning", (in eng). Sci Rep. 2023;13(1):5329. https://doi.org/10.1038/s41598-023-32440-8.
Article CAS PubMed PubMed Central Google Scholar
Paik K, Kim BR, Youn SW. “Evaluation of the area subscore of the palmoplantar pustulosis area and severity index using an attention U-net deep learning algorithm,” (in eng). J Dermatol. 2023;50(6):787–92. https://doi.org/10.1111/1346-8138.16752.
Liu Z, Wang X, Ma Y, Lin Y, Wang G. “Artificial intelligence in psoriasis: Where we are and where we are going”, (in eng). Exp Dermatol. 2023;32(11):1884–99. https://doi.org/10.1111/exd.14938.
Hong J, Mosca M, Hadeler E, Hakimi M, Bhutani T, Liao W. The future of personalized medicine in psoriasis. Dermatol Rev. 2021;2:282–8. https://doi.org/10.1002/der2.87.
Yao P, et al. “Identification of ADAM23 as a potential signature for psoriasis using integrative machine-learning and experimental verification,” (in eng). Int J Gen Med. 2023;16:6051–64. https://doi.org/10.2147/IJGM.S441262.
Article CAS PubMed PubMed Central Google Scholar
Deng J, et al. “Multi-omics approach identifies PI3 as a biomarker for disease severity and hyper-keratinization in psoriasis”, (in eng). J Dermatol Sci. 2023;111(3):101–8. https://doi.org/10.1016/j.jdermsci.2023.07.005.
Article CAS PubMed Google Scholar
Xing L, et al. “Exploration of biomarkers of psoriasis through combined multiomics analysis,” (in eng). Mediators Inflamm. 2022;2022:7731082. https://doi.org/10.1155/2022/7731082.
Article CAS PubMed PubMed Central Google Scholar
Liu Y, Cui S, Sun J, Yan X, Han D. Machine learning analysis of human skin by optoacoustic mesoscopy for automated extraction of psoriasis and aging biomarkers. IEEE Trans Med Imag 2024. https://doi.org/10.1109/TMI.2024.3356180. Epub ahead of print. PMID: 38241120.
Song JK, et al. “Classification and biomarker gene selection of pyroptosis-related gene expression in psoriasis using a random forest algorithm”, (in eng). Front Genet. 2022;13: 850108. https://doi.org/10.3389/fgene.2022.850108.
Article CAS PubMed PubMed Central Google Scholar
He H. et al. Machine learning analysis of human skin by optoacoustic mesoscopy for automated extraction of psoriasis and aging biomarkers (in eng). IEEE Trans Med Imag. 2024. https://doi.org/10.1109/TMI.2024.3356180.
Choksi H, et al. Identifying serum metabolomic markers associated with skin disease activity in patients with psoriatic arthritis (in eng), Int J Mol Sci. 2023;24(20). https://doi.org/10.3390/ijms242015299.
Koussiouris J, Looby N, Kotlyar M, Kulasingam V, Jurisica I, Chandran V. Classifying patients with psoriatic arthritis according to their disease activity status using serum metabolites and machine learning (in eng). Metabolomics. 2024;20(1):17. https://doi.org/10.1007/s11306-023-02079-7.
Liu J, et al. Combined single cell transcriptome and surface epitope profiling identifies potential biomarkers of psoriatic arthritis and facilitates diagnosis (in eng). Front Immunol. 2022;13.
Narbutt J, et al. “A priori estimation of the narrow-band UVB phototherapy outcome for moderate-to-severe psoriasis based on the patients’ questionnaire and blood tests using random forest classifier”, (in eng). Clin Cosmet Investig Dermatol. 2021;14:253–9. https://doi.org/10.2147/CCID.S296604.
Article PubMed PubMed Central Google Scholar
Bhutani T, Liao W. “A practical approach to home UVB phototherapy for the treatment of generalized psoriasis", (in eng). Pract Dermatol. 2010;7(2):31–5.
PubMed PubMed Central Google Scholar
Foulkes AC, et al. “A framework for multi-omic prediction of treatment response to biologic therapy for psoriasis,” (in eng). J Invest Dermatol. 2019;139(1):100–7. https://doi.org/10.1016/j.jid.2018.04.041.
Article CAS PubMed Google Scholar
Correa da Rosa J, Kim J, Tian S, Tomalin LE, Krueger JG, Suárez-Fariñas M. “Shrinking the psoriasis assessment gap: early gene-expression profiling accurately predicts response to long-term treatment”, (in eng). J Invest Dermatol. 2017;137(2):305–12. https://doi.org/10.1016/j.jid.2016.09.015.
Article CAS PubMed Google Scholar
Tomalin LE, et al. “Early quantification of systemic inflammatory proteins predicts long-term treatment response to tofacitinib and etanercept”, (in eng). J Invest Dermatol. 2020;140(5):1026–34. https://doi.org/10.1016/j.jid.2019.09.023.
Article CAS PubMed Google Scholar
Bagel J, Wang Y, Montgomery P III, Abaya C, Andrade E, Boyce C, Tomich T, Lee B-I, Pariser D, Menter A, Dickerson T. A machine learning-based test for predicting response to psoriasis biologics. Skin J Cutan Med. 2021;5(6):621–38. https://doi.org/10.25251/skin.5.6.5
留言 (0)