Gene regulatory networks in disease and ageing

Enge, M. et al. Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171, 321–330.e14 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Jimenez, C. P. et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355, 1433–1436 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Southworth, L. K., Owen, A. B. & Kim, S. K. Aging mice show a decreasing correlation of gene expression within genetic modules. PLoS Genet. 5, e1000776 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Yang, J.-H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e27 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levy, O. et al. Age-related loss of gene-to-gene transcriptional coordination among single cells. Nat. Metab. 2, 1305–1315 (2020).

Article  CAS  PubMed  Google Scholar 

Tatar, M. et al. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110 (2001).

Article  CAS  PubMed  Google Scholar 

Blüher, M., Kahn, B. B. & Kahn, C. R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

Article  PubMed  Google Scholar 

Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levin, M. Bioelectric signaling: reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 184, 1971–1989 (2021).

Article  CAS  PubMed  Google Scholar 

Kann, M. et al. Genome-wide analysis of Wilms’ tumor 1-controlled gene expression in podocytes reveals key regulatory mechanisms. J. Am. Soc. Nephrol. 26, 2097–2104 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Talyan, S. et al. CALINCA — a novel pipeline for the identification of lncRNAs in podocyte disease. Cells 10, 692 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, Y. et al. Global transcriptomic changes occur in aged mouse podocytes. Kidney Int. 98, 1160–1173 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ettou, S. et al. Epigenetic transcriptional reprogramming by WT1 mediates a repair response during podocyte injury. Sci. Adv. 6, eabb5460 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, J.-K. et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum. Mol. Genet. 11, 651–659 (2002).

Article  CAS  PubMed  Google Scholar 

Palmer, A. K. et al. Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18, e12950 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Shankland, S. J. et al. Podocyte aging: why and how getting old matters. J. Am. Soc. Nephrol. 32, 2697–2713 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh, A. et al. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 15, 1384–1393 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, S. I. et al. TGF-β-activated kinase 1 is crucial in podocyte differentiation and glomerular capillary formation. J. Am. Soc. Nephrol. 25, 1966–1978 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamatani, H. et al. TGF-β1 alters DNA methylation levels in promoter and enhancer regions of the WT1 gene in human podocytes. Nephrology 24, 575–584 (2019).

Article  CAS  PubMed  Google Scholar 

Zhou, L. et al. Mutual antagonism of Wilms’ tumor 1 and β-catenin dictates podocyte health and disease. J. Am. Soc. Nephrol. 26, 677–691 (2015).

Article  CAS  PubMed  Google Scholar 

Dehbi, M., Hiscott, J. & Pelletier, J. Activation of the wt1 Wilms’ tumor suppressor gene by NF-κB. Oncogene 16, 2033–2039 (1998).

Article  CAS  PubMed  Google Scholar 

Arellano-Rodríguez, M. et al. The inflammatory process modulates the expression and localization of WT1 in podocytes leading to kidney damage. In Vivo 35, 3137–3146 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Wang, D., Li, Y., Wu, C. & Liu, Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE 6, e17048 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, S.-Y. et al. CMIP interacts with WT1 and targets it on the proteasome degradation pathway. Clin. Transl. Med. 11, e460 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rico, M. et al. WT1-interacting protein and ZO-1 translocate into podocyte nuclei after puromycin aminonucleoside treatment. Am. J. Physiol. Renal Physiol. 289, F431–F441 (2005).

Article  CAS  PubMed  Google Scholar 

Gebeshuber, C. A. et al. Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat. Med. 19, 481–487 (2013).

Article  CAS  PubMed  Google Scholar 

Wang, Q., Ge, X., Zhang, J. & Chen, L. Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer’s disease via inhibition of the miR-375/SIX4 axis. Aging 12, 23974–23995 (2020).

Article  CAS 

留言 (0)

沒有登入
gif