Surface-engineered erythrocyte membrane-camouflage fluorescent bioprobe for precision ovarian cancer surgery

Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019;20:e354–67. https://doi.org/10.1016/S1470-2045(19)30317-1.

Article  CAS  PubMed  Google Scholar 

Hou D-Y, Wang M-D, Hu X-J, Wang Z-J, Zhang N-Y, Lv G-T, et al. An activated excretion-retarded tumor imaging strategy towards metabolic organs. Bioactive Mater. 2022;14:110–19. https://doi.org/10.1016/j.bioactmat.2021.12.003.

Article  CAS  Google Scholar 

He J, Yang L, Yi W, Fan W, Wen Y, Miao X, et al. Combination of fluorescence-guided surgery with photodynamic therapy for the treatment of cancer. Mol Imaging. 2017;16:1536012117722911. https://doi.org/10.1177/1536012117722911.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duan Q-J, Zhao Z-Y, Zhang Y-J, Fu L, Yuan Y-Y, Du J-Z, et al. Activatable fluorescent probes for real-time imaging-guided tumor therapy. Adv Drug Deliv Rev. 2023;114793. https://doi.org/10.1016/j.addr.2023.114793.

Jia R, Xu H, Wang C, Su L, Jing J, Xu S, et al. NIR-II emissive AIEgen photosensitizers enable ultrasensitive imaging-guided surgery and phototherapy to fully inhibit orthotopic hepatic tumors. J Nanobiotechnol. 2021;19:1–12. https://doi.org/10.1186/s12951-021-01168-w.

Article  CAS  Google Scholar 

An JM, Moon H, Verwilst P, Shin J, Kim BM, Park C-K, et al. Human glioblastoma visualization: triple receptor-targeting fluorescent complex of dye, siwv tetra-peptide, and serum albumin protein. ACS Sens. 2021;6:2270–80. https://doi.org/10.1021/acssensors.1c00320.

Article  CAS  PubMed  Google Scholar 

Ren H, Zeng X-Z, Zhao X-X, Hou D-Y, Yao H, Yaseen M, et al. A bioactivated in vivo assembly nanotechnology fabricated NIR probe for small pancreatic tumor intraoperative imaging. Nat Commun. 2022;13:418. https://doi.org/10.1038/s41467-021-27932-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee Y-D, Shin HJ, Yoo J, Kim G, Kang M-K, Lee JJ, et al. Metal complexation-mediated stable and biocompatible nanoformulation of clinically approved near-infrared absorber for improved tumor targeting and photonic theranostics. Nano Converg. 2021;8:1–11. https://doi.org/10.1186/s40580-021-00286-3.

Article  CAS  Google Scholar 

Van Keulen S, Hom M, White H, Rosenthal EL, Baik FM. The evolution of fluorescence-guided surgery. Mol Imaging Biol. 2023;25:36–45. https://doi.org/10.1007/s11307-022-01772-8.

Article  CAS  PubMed  Google Scholar 

Shimizu S, Kamiike W, Hatanaka N, Yoshida Y, Tagawa K, Miyata M, et al. New method for measuring ICG Rmax with a clearance meter. World J Surg. 1995;19:113–18. https://doi.org/10.1007/BF00316992.

Article  CAS  PubMed  Google Scholar 

Yang M, Zeng Z, Lam JWY, Fan J, Pu K, Tang BZ. State-of-the-art self-luminescence: a win–win situation. Chem Soc Rev. 2022;51:8815–31. https://doi.org/10.1039/D2CS00228K.

Article  CAS  PubMed  Google Scholar 

Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, et al. Aggregation-induced emission (AIE), life and health. ACS Nano. 2023;17:14347–405. https://doi.org/10.1021/acsnano.3c03925.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu WL, Zou MZ, Qin SY, Cheng YJ, Ma YH, Sun YX, et al. Recent advances of cell membrane-coated nanomaterials for biomedical applications. Adv Funct Mater. 2020;30:2003559. https://doi.org/10.1002/adfm.202003559.

Article  CAS  Google Scholar 

Xuan M, Shao J, Li J. Cell membrane-covered nanoparticles as biomaterials. Natl Sci Rev. 2019;6:551–61. https://doi.org/10.1093/nsr/nwz037.].

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Bai X, Martikainen M-V, Kårlund A, Roponen M, Xu W, et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nat Commun. 2021;12:5726. https://doi.org/10.1038/s41467-021-26052-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo G-F, Chen W-H, Zeng X, Zhang X-Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev. 2021;50:945–85. https://doi.org/10.1039/D0CS00152J.

Article  CAS  PubMed  Google Scholar 

Wang Y, Xu X, Chen X, Li J. Multifunctional biomedical materials derived from biological membranes. Adv Mater. 2022;34:2107406. https://doi.org/10.1002/adma.202107406.

Article  CAS  Google Scholar 

Wang Y, Zhang P, Wei Y, Shen K, Xiao L, Miron RJ, et al. Cell-membrane‐display nanotechnology. Adv Healthc Mater. 2021;10:2001014. https://doi.org/10.1002/adhm.202001014.

Article  CAS  Google Scholar 

Pan H, Zheng M, Ma A, Liu L, Cai L. Cell/bacteria-based bioactive materials for cancer immune modulation and precision therapy. Adv Mater. 2021;33:2100241. https://doi.org/10.1002/adma.202100241.

Article  CAS  Google Scholar 

Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol. 2018;13:1182–90. https://doi.org/10.1038/s41565-018-0254-4.

Article  CAS  PubMed  Google Scholar 

Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20:33–48. https://doi.org/10.1038/s41571-022-00699-x.

Article  PubMed  Google Scholar 

Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, et al. Erythrocyte-membrane‐enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv Mater. 2017;29:1701429. https://doi.org/10.1002/adma.201701429.

Article  CAS  Google Scholar 

Liu J-M, Zhang D-D, Fang G-Z, Wang S. Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials. 2018;165:39–47. https://doi.org/10.1016/j.biomaterials.2018.02.042.

Article  CAS  PubMed  Google Scholar 

Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv Drug Deliv Rev. 2021;170:312–39. https://doi.org/10.1016/j.addr.2020.09.001.

Article  CAS  PubMed  Google Scholar 

Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MT. Advances in drug delivery systems based on red blood cells and their membrane-derived nanoparticles. ACS Nano. 2023;17:5187–210. https://doi.org/10.1021/acsnano.2c11965.

Article  CAS  PubMed  Google Scholar 

Zhu L, Zhong Y, Wu S, Yan M, Cao Y, Mou N, et al. Cell membrane camouflaged biomimetic nanoparticles: focusing on tumor theranostics. Mater Today Bio. 2022;14:100228. https://doi.org/10.1016/j.mtbio.2022.100228.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang H, Rho S, Stiles WR, Hu S, Baek Y, Hwang DW, et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv Healthc Mater. 2020;9:1901223. https://doi.org/10.1002/adhm.201901223.

Article  CAS  Google Scholar 

Sun R, Xiang J, Zhou Q, Piao Y, Tang J, Shao S, et al. The tumor EPR effect for cancer drug delivery: current status, limitations, and alternatives. Adv Drug Deliv Rev. 2022;114614. https://doi.org/10.1016/j.addr.2022.114614.

Qiao C, Wang X, Liu G, Yang Z, Jia Q, Wang L, et al. Erythrocyte membrane camouflaged metal–organic framework nanodrugs for remodeled tumor microenvironment and enhanced tumor chemotherapy. Adv Funct Mater. 2022;32:2107791. https://doi.org/10.1002/adfm.202107791.

Article  CAS  Google Scholar 

Zhang W, Zhao M, Gao Y, Cheng X, Liu X, Tang S, et al. Biomimetic erythrocytes engineered drug delivery for cancer therapy. Chem Eng J. 2022;433:133498. https://doi.org/10.1016/j.cej.2021.133498.

Article 

留言 (0)

沒有登入
gif