BUB1 regulates non-homologous end joining pathway to mediate radioresistance in triple-negative breast cancer

Kyndi M, Sorensen FB, Knudsen H, Overgaard M, Nielsen HM, Overgaard J, et al. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer: the Danish Breast Cancer Cooperative Group. J Clin Oncol. 2008;26(9):1419–26.

Article  CAS  PubMed  Google Scholar 

Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front Oncol. 2013;3:113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morgan MA, Lawrence TS. Molecular Pathways: Overcoming Radiation Resistance by Targeting DNA Damage Response Pathways. Clin Cancer Res. 2015;21(13):2898–904.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Britton S, Coates J, Jackson SP. A new method for high-resolution imaging of Ku foci to decipher mechanisms of DNA double-strand break repair. J Cell Biol. 2013;202(3):579–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ahnesorg P, Smith P, Jackson SP. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell. 2006;124(2):301–13.

Article  CAS  PubMed  Google Scholar 

Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47(4):497–510.

Article  CAS  PubMed  Google Scholar 

Gupta A, Hunt CR, Chakraborty S, Pandita RK, Yordy J, Ramnarain DB, et al. Role of 53BP1 in the regulation of DNA double-strand break repair pathway choice. Radiat Res. 2014;181(1):1–8.

Article  CAS  PubMed  Google Scholar 

Berry MR, Fan TM. Target-Based Radiosensitization Strategies: Concepts and Companion Animal Model Outlook. Front Oncol. 2021;11:768692.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sriramulu S, Thoidingjam S, Brown SL, Siddiqui F, Movsas B, Nyati S. Molecular targets that sensitize cancer to radiation killing: From the bench to the bedside. Biomed Pharmacother. 2022;158:114126.

Article  PubMed  Google Scholar 

Jessulat M, Malty RH, Nguyen-Tran DH, Deineko V, Aoki H, Vlasblom J, et al. Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining. Mol Cell Biol. 2015;35(14):2448–63.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Wang H, Xu Y, Brinkman KL, Ishiyama H, Wong ST, et al. The kinetochore protein Bub1 participates in the DNA damage response. DNA Repair (Amst). 2012;11(2):185–91.

Article  CAS  PubMed  Google Scholar 

Komura K, Inamoto T, Tsujino T, Matsui Y, Konuma T, Nishimura K, et al. Increased BUB1B/BUBR1 expression contributes to aberrant DNA repair activity leading to resistance to DNA-damaging agents. Oncogene. 2021;40(43):6210–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nyati S, Schinske-Sebolt K, Pitchiaya S, Chekhovskiy K, Chator A, Chaudhry N, et al. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-beta signaling. Sci Signal. 2015;8(358):ra1.

Article  PubMed  PubMed Central  Google Scholar 

Nyati S, Gregg B, Xu JQ, Young G, Kimmel L, Mukesh N, et al. TGFBR2 mediated phosphorylation of BUB1 at Ser-318 is required for transforming growth factor-beta signaling. Cancer Res. 2019;79(13):3430.

Article  Google Scholar 

Nyati S, Gregg BS, Xu J, Young G, Kimmel L, Nyati MK, et al. TGFBR2 mediated phosphorylation of BUB1 at Ser-318 is required for transforming growth factor-beta signaling. Neoplasia. 2020;22(4):163–78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tang ZY, Shu HJ, Oncel D, Chen S, Yu HT. Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Mol Cell. 2004;16(3):387–97.

Article  CAS  PubMed  Google Scholar 

Tang ZY, Sun YX, Harley SE, Zou H, Yu HT. Human Bub1 protects centromeric sister-chromatid cohesion through Shugoshin during mitosis. Proc Natl Acad Sci U S A. 2004;101(52):18012–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu H, Tang Z. Bub1 multitasking in mitosis. Cell Cycle. 2005;4(2):262–5.

Article  CAS  PubMed  Google Scholar 

Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA. 2011;305(18):1873–81.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Speers C, Zhao SG, Kothari V, Santola A, Liu M, Wilder-Romans K, et al. Maternal Embryonic Leucine Zipper Kinase (MELK) as a Novel Mediator and Biomarker of Radioresistance in Human Breast Cancer. Clin Cancer Res. 2016;22(23):5864–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao SG, Shilkrut M, Speers C, Liu M, Wilder-Romans K, Lawrence TS, et al. Development and validation of a novel platform-independent metastasis signature in human breast cancer. PLoS One. 2015;10(5):e0126631.

Article  PubMed  PubMed Central  Google Scholar 

Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL, Hu JH, et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33(1):73–80.

Article  CAS  PubMed  Google Scholar 

Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;208:44–53.

Article  CAS  PubMed  Google Scholar 

Serçin Ö, Reither S, Roidos P, Ballin N, Palikyras S, Baginska A, et al. A solid-phase transfection platform for arrayed CRISPR screens. Mol Syst Biol. 2019;15(12):e8983.

Article  PubMed  PubMed Central  Google Scholar 

Chien JC, Tabet E, Pinkham K, da Hora CC, Chang JC, Lin S, et al. A multiplexed bioluminescent reporter for sensitive and non-invasive tracking of DNA double strand break repair dynamics in vitro and in vivo. Nucleic Acids Res. 2020;48(17):e100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

So S, Davis AJ, Chen DJ. Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol. 2009;187(7):977–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu H, Saha J, Beckmann PJ, Hendrickson EA, Davis AJ. DNA-PKcs promotes chromatin decondensation to facilitate initiation of the DNA damage response. Nucleic Acids Res. 2019;47(18):9467–79.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu H, Shamanna RA, de Freitas JK, Okur M, Khadka P, Kulikowicz T, et al. Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun. 2017;8(1):2039.

留言 (0)

沒有登入
gif