Distinct locomotor adaptation between conventional walking and walking with a walker

Bateni H, Maki BE (2005) Assistive devices for balance and mobility: benefits, demands, and adverse consequences. Arch Phys Med Rehabil 86(1):134–145

Article  PubMed  Google Scholar 

Bertrand K, Raymond MH, Miller WC, Ginis KAM, Demers L (2017) Walking aids for enabling activity and participation: a systematic review. Am J Phys Med Rehabil 96(12):894–903

Article  PubMed  Google Scholar 

Bradley SM, Hernandez CR (2011) Geriatric assistive devices. Am Fam Physician 84(4):405–411

PubMed  Google Scholar 

Buurke TJW, Lamoth CJC, van der Woude LHV, den Otter R (2019) Handrail holding during treadmill walking reduces locomotor learning in able-bodied persons. IEEE Trans Neural Syst Rehabil Eng 27(9):1753–1759

Article  PubMed  Google Scholar 

Choi JT, Bastian AJ (2007) Adaptation reveals independent control networks for human walking. Nat Neurosci 10(8):1055–1062

Article  CAS  PubMed  Google Scholar 

Costamagna E, Thies SB, Kenney LPJ, Howard D, Lindemann U, Klenk J, Baker R (2019) Objective measures of rollator user stability and device loading during different walking scenarios. PLoS ONE 14(1):e0210960

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dietz V (2009) Body weight supported gait training: from laboratory to clinical setting. Brain Res Bull 78(1):1–6

Article  Google Scholar 

Geravand M, Korondi PZ, Werner C, Hauer K, Peer A (2017) Human sit-to-stand transfer modeling towards intuitive and biologically-inspired robot assistance. Auton Robot 41(3):575–592

Article  Google Scholar 

Jayaram G, Galea JM, Bastian AJ, Celnik P (2011) Human locomotor adaptive learning is proportional to depression of cerebellar excitability. Cereb Cortex 21(8):1901–1909

Article  PubMed  PubMed Central  Google Scholar 

Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A (2012) Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 107(11):2950–2957

Article  PubMed  PubMed Central  Google Scholar 

Liu HH (2009) Assessment of rolling walkers used by older adults in senior-living communities. Geriatr Gerontol Int 9(2):124–130

Article  PubMed  Google Scholar 

Malone LA, Bastian AJ (2010) Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation. J Neurophysiol 103(4):1954–1962

Article  PubMed  PubMed Central  Google Scholar 

Morton SM, Bastian AJ (2006) Cerebellar contributions to locomotor adaptations during splitbelt treadmill walking. J Neurosci 26(36):9107–9116

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obata H, Ogawa T, Nakazawa K (2019) Unique controlling mechanisms underlying walking with two handheld poles in contrast to those of conventional walking as revealed by split-belt locomotor adaptation. Exp Brain Res 237(7):1699–1707

Article  PubMed  Google Scholar 

Obata H, Ogawa T, Yokoyama H, Kaneko N, Nakazawa K (2020) Spatiotemporal characteristics of locomotor adaptation of walking with two handheld poles. Exp Brain Res 238(12):2973–2982

Article  PubMed  Google Scholar 

Ogawa T, Kawashima N, Ogata T, Nakazawa K (2012) Limited transfer of newly acquired movement patterns across walking and running in humans. PLoS ONE 7(9):e46349

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ogawa T, Kawashima N, Ogata T, Nakazawa K (2014) Predictive control of ankle stiffness at heel contact is a key element of locomotor adaptation during split-belt treadmill walking in humans. J Neurophysiol 111(4):722–732

Article  PubMed  Google Scholar 

Ogawa T, Kawashima N, Obata H, Kanosue K, Nakazawa K (2015) Distinct motor strategies underlying split-belt adaptation in human walking and running. PLoS ONE 10(3):e0121951

Article  PubMed  PubMed Central  Google Scholar 

Ogawa T, Obata H, Yokoyama H, Kawashima N, Nakazawa K (2023) Different functional networks underlying human walking with pulling force fields acting in forward or backward directions. Sci Rep 13(1):1909. https://doi.org/10.1038/s41598-023-29231-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park S, Finley JM (2022) Manual stabilization reveals a transient role for balance control during locomotor adaptation. J Neurophysiol 128(4):808–818

Article  PubMed  PubMed Central  Google Scholar 

Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

Article  PubMed  Google Scholar 

Reisman DS, Block HJ, Bastian AJ (2005) Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol 94(4):2403–2415

Article  PubMed  Google Scholar 

Suica Z, Romkes J, Tal A, Maguire C (2016) Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects. J Bodyw Mov Ther 20(1):65–73

Article  PubMed  Google Scholar 

Taylor JA, Thoroughman KA (2007) Divided attention impairs human motor adaptation but not feedback control. J Neurophysiol 98(1):317–326

Article  PubMed  Google Scholar 

Vasudevan EV, Bastian AJ (2010) Split-belt treadmill adaptation shows different functional networks for fast and slow human walking. J Neurophysiol 103(1):183–191

Article  PubMed  Google Scholar 

Wolpaw JR (2007) Spinal cord plasticity in acquisition and maintenance of motor skills. Acta Physiol (oxf) 189(2):155–169

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif