Altered glia-neuron communication in Alzheimer’s Disease affects WNT, p53, and NFkB Signaling determined by snRNA-seq

Emmady PD, Schoo C, Tadi P. Major neurocognitive disorder (dementia). StatPearls Publishing; 2022.

What causes Alzheimer’s disease?. In: National Institute on Aging. https://www.nia.nih.gov/health/what-causes-alzheimers-disease. Accessed 30 Aug 2023.

Matejuk A, Ransohoff RM. (2020) Crosstalk Between Astrocytes and Microglia: An Overview. Front Immunol. https://doi.org/10.3389/fimmu.2020.01416.

Pan J, Ma N, Yu B, Zhang W, Wan J. Transcriptomic profiling of microglia and astrocytes throughout aging. J Neuroinflammation. 2020;17:1–19.

Article  Google Scholar 

Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol. 2013;3:130181.

Article  PubMed  PubMed Central  Google Scholar 

Bernaus A, Blanco S, Sevilla A. Glia Crosstalk in Neuroinflammatory diseases. Front Cell Neurosci. 2020;14:209.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Turner DA, Adamson DC. Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J Neuropathol Exp Neurol. 2011;70:167–76.

Article  CAS  PubMed  Google Scholar 

Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci. 2019;22:154–66.

Article  CAS  PubMed  Google Scholar 

Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119:37–53.

Article  PubMed  Google Scholar 

Fang L-P, Bai X. Oligodendrocyte precursor cells: the multitaskers in the brain. Pflugers Arch. 2023;475:1035–44.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clayton KA, Van Enoo AA, Ikezu T. Alzheimer’s Disease: the role of Microglia in Brain Homeostasis and Proteopathy. Front Neurosci. 2017;11:680.

Article  PubMed  PubMed Central  Google Scholar 

Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional microglia-neuron communication in Health and Disease. Front Cell Neurosci. 2018;12:323.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Augusto-Oliveira M, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Takeda PY, Anthony DC, Malva JO, Crespo-Lopez ME. What do Microglia really do in healthy adult brain? Cells. 2019. https://doi.org/10.3390/cells8101293.

Article  PubMed  PubMed Central  Google Scholar 

Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019;5:272–93.

Article  Google Scholar 

Aghaizu ND, Jin H, Whiting PJ. Dysregulated wnt signalling in the Alzheimer’s brain. Brain Sci. 2020. https://doi.org/10.3390/brainsci10120902.

Article  PubMed  PubMed Central  Google Scholar 

Palomer E, Buechler J, Salinas PC. Wnt signaling deregulation in the aging and Alzheimer’s brain. Front Cell Neurosci. 2019;13:227.

Article  CAS  PubMed  PubMed Central  Google Scholar 

von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Front Cell Neurosci. 2015;9:426.

Google Scholar 

Das P, Golde T. Dysfunction of TGF-beta signaling in Alzheimer’s disease. J Clin Invest. 2006;116:2855–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapoor M, Chinnathambi S. TGF-β1 signalling in Alzheimer’s pathology and cytoskeletal reorganization: a specialized tau perspective. J Neuroinflammation. 2023;20:72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med. 2021;169:382–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oddo S. The role of mTOR signaling in Alzheimer disease. Front Biosci. 2012;4:941–52.

Article  Google Scholar 

Sun E, Motolani A, Campos L, Lu T. The pivotal role of NF-kB in the Pathogenesis and therapeutics of Alzheimer’s Disease. Int J Mol Sci. 2022. https://doi.org/10.3390/ijms23168972.

Article  PubMed  PubMed Central  Google Scholar 

Ju Hwang C, Choi D-Y, Park MH, Hong JT. NF-κB as a key mediator of brain inflammation in Alzheimer’s Disease. CNS Neurol Disord Drug Targets. 2019;18:3–10.

Article  PubMed  Google Scholar 

Wolfrum P, Fietz A, Schnichels S, Hurst J. The function of p53 and its role in Alzheimer’s and Parkinson’s disease compared to age-related macular degeneration. Front Neurosci. 2022;16:1029473.

Article  PubMed  PubMed Central  Google Scholar 

Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer’s disease: a valuable target to stimulate or suppress? Cell Stress Chaperones. 2021;26:871–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar M, Bansal N. Implications of phosphoinositide 3-Kinase-akt (PI3K-Akt) pathway in the pathogenesis of Alzheimer’s Disease. Mol Neurobiol. 2022;59:354–85.

Article  CAS  PubMed  Google Scholar 

Yu H-J, Koh S-H. The role of PI3K/AKT pathway and its therapeutic possibility in Alzheimer’s disease. Hanyang Med Rev. 2017;37:18–24.

Article  CAS  Google Scholar 

Almet AA, Cang Z, Jin S, Nie Q. The landscape of cell-cell communication through single-cell transcriptomics. Curr Opin Syst Biol. 2021;26:12–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee CY, Riffle D, Xiong Y, Momtaz N, Hwang A, Duan Z, Zhang J. (2023) Characterizing dysregulations via cell-cell communications in Alzheimer’s brains using single-cell transcriptomes. bioRxiv 2023.07.16.548274.

Albanus RD, Finan GM, Brase L et al. (2023) Systematic analysis of cellular crosstalk reveals a role for SEMA6D-TREM2 regulating microglial function in Alzheimer’s disease. bioRxiv 2022.11.11.516215.

Liu A, Fernandes BS, Citu C, Zhao Z. Unraveling the intercellular communication disruption and key pathways in Alzheimer’s disease: an integrative study of single-nucleus transcriptomes and genetic association. Res Sq. 2023. https://doi.org/10.21203/rs.3.rs-3335643/v1.

Article  PubMed  PubMed Central  Google Scholar 

Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, Silva J, Leavy K, Perez-Rosendahl M, Swarup V. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet. 2021;53:1143–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lau S-F, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2020;117:25800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sadick JS, O’Dea MR, Hasel P, Dykstra T, Faustin A, Liddelow SA. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron. 2022;110:1788–e180510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Browaeys R, Gilis J, Sang-Aram C, De Bleser P, Hoste L, Tavernier S, Lambrechts D, Seurinck R, Saeys Y. (2023) MultiNicheNet: a flexible framework for differential cell-cell communication analysis from multi-sample multi-condition single-cell transcriptomics data. bioRxiv 2023.06.13.544751.

Badia-I-Mompel P, Vélez Santiago J, Braunger J, et al. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinform Adv. 2022;2:vbac016.

Article 

留言 (0)

沒有登入
gif