Diabetic neuropathy: understanding the nexus of diabetic neuropathy, gut dysbiosis and cognitive impairment

Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Tocchetti CG, editor. Oxid Med Cell Longev [Internet]. 2020;2020:8609213. https://doi.org/10.1155/2020/8609213.

IDF DIABETES, ATLAS. 2021.

Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5:42.

Article  PubMed  PubMed Central  Google Scholar 

Grover M, Makkar R, Sehgal A, Seth SK, Gupta J, Behl T. Etiological aspects for the occurrence of Diabetic Neuropathy and the suggested measures. Neurophysiology. 2020;52:159–68.

Article  Google Scholar 

Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott J et al. Painful and Painless Diabetic Neuropathies: What Is the Difference? Curr Diab Rep [Internet]. 2019;19:32. https://doi.org/10.1007/s11892-019-1150-5.

Tanenberg RJ, Donofrio PD. Neuropathic problems of the Lower limbs in Diabetic patients. Levin and O’Neal’s the Diabetic Foot with CD-ROM. Elsevier; 2007. pp. 33–74.

Ponomareva MN, Sakharova SV, Turlybekova DA, Protopopov LA, Pimenov AA, Timofeeva EE, THE INFORMATIVE VALUE OF PERIPHERAL BLOOD INDICES IN THE DIAGNOSIS OF THE ETIOLOGY OF OPTIC NERVE DAMAGE. Современные проблемы науки и образования (Mod Probl Sci Education). 2022;7–7.

Rumora AE, Guo K, Hinder LM, O’Brien PD, Hayes JM, Hur J et al. A high-Fat Diet disrupts nerve lipids and mitochondrial function in Murine models of Neuropathy. Front Physiol. 2022;13.

Ding P-F, Zhang H-S, Wang J, Gao Y-Y, Mao J-N, Hang C-H, et al. Insulin resistance in ischemic stroke: mechanisms and therapeutic approaches. Front Endocrinol (Lausanne). 2022;13:1092431.

Article  PubMed  Google Scholar 

Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: from energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab. 2023;6:e386.

Article  PubMed  Google Scholar 

Stentz B. Hyperglycemia- and Hyperlipidemia-Induced inflammation and oxidative stress through human T lymphocytes and human aortic endothelial cells (HAEC). Sugar Intake - Risks and benefits and the global diabetes epidemic. IntechOpen; 2021.

Hyperglycemia and Hyperlipidemia Induced Inflammation. and Oxidative Stress in Human T Lymphocytes and Salutary effects of ω- 3 fatty acid. SunKrist J Diabetol Clin Care. 2020;1–9.

Zhao Y, Zhu R, Wang D, Liu X. Genetics of diabetic neuropathy: systematic review, meta-analysis and trial sequential analysis. Ann Clin Transl Neurol. 2019;6:1996–2013.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou X, Zhu Y, Gao L, Li Y, Li H, Huang C et al. Binding of RAGE and RIPK1 induces cognitive deficits in chronic hyperglycemia-derived neuroinflammation. CNS Neurosci Ther. 2023.

Rom S, Zuluaga-Ramirez V, Gajghate S, Seliga A, Winfield M, Heldt NA, et al. Hyperglycemia-driven neuroinflammation compromises BBB leading to memory loss in both diabetes Mellitus (DM) type 1 and type 2 mouse models. Mol Neurobiol. 2019;56:1883–96.

Article  CAS  PubMed  Google Scholar 

Alshammari NA, Alodhayani AA, Joy SS, Isnani A, Mujammami M, Alfadda AA, et al. Evaluation of risk factors for Diabetic Peripheral Neuropathy among Saudi Type 2 Diabetic patients with longer duration of diabetes. Diabetes Metab Syndr Obes. 2022;15:3007–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braffett BH, Gubitosi-Klug RA, Albers JW, Feldman EL, Martin CL, White NH, et al. Risk factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and complications (DCCT/EDIC) study. Diabetes. 2020;69:1000–10.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sidawi B, Al-Hariri MTA. The impact of built environment on diabetic patients: the case of Eastern Province, KIngdom of Saudi Arabia. Glob J Health Sci. 2012;4:126–38.

Article  PubMed  PubMed Central  Google Scholar 

Kaur K. Current strategies used for better management of Type-2 diabetes mellitus. 2020. https://api.semanticscholar.org/CorpusID:219602164.

Galiero R, Caturano A, Vetrano E, Beccia D, Brin C, Alfano M et al. Peripheral neuropathy in diabetes Mellitus: pathogenetic mechanisms and Diagnostic options. Int J Mol Sci. 2023;24.

Jun L, Jang SD, Hee N, Mi Y et al. The formation of advanced glycation end-products (AGEs), increased polyol pathway flux, activation of protein kinase C isoforms, and increased hexosamine pathway flux. 2011. https://api.semanticscholar.org/CorpusID:210139933.

Imran A, Shehzad MT, Shah SJA, Laws M, Al-Adhami T, Rahman KM, et al. Development, Molecular Docking, and in Silico ADME evaluation of selective ALR2 inhibitors for the Treatment of Diabetic Complications via suppression of the Polyol Pathway. ACS Omega. 2022;7:26425–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egaña-Gorroño L, López-Díez R, Yepuri G, Ramirez LS, Reverdatto S, Gugger PF et al. Receptor for Advanced Glycation End products (RAGE) and mechanisms and Therapeutic opportunities in Diabetes and Cardiovascular Disease: insights from human subjects and animal models. Front Cardiovasc Med. 2020;7.

Sellegounder D, Zafari P, Rajabinejad M, Taghadosi M, Kapahi P. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Int Immunopharmacol. 2021;98:107806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaveroux C, Sarcinelli C, Barbet V, Belfeki S, Barthelaix A, Ferraro-Peyret C, et al. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway. Sci Rep. 2016;6:27278.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: regulation and function. Genes (Basel). 2023;14.

Ighodaro OM. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed Pharmacother. 2018;108:656–62.

Article  CAS  PubMed  Google Scholar 

Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. Biomed Pharmacother. 2018;107:306–28.

Article  CAS  PubMed  Google Scholar 

Carrasco C, Naziroǧlu M, Rodríguez AB, Pariente JA. Neuropathic Pain: delving into the oxidative origin and the possible implication of transient receptor potential channels. Front Physiol. 2018;9.

Song N, Thaiss F, Guo L. NFκB and kidney Injury. Front Immunol. 2019;10.

Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, Guerrero-Hue M, García-Caballero C, Vázquez-Carballo C, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in Diabetic Nephropathy. Int J Mol Sci. 2020;21:3798.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar A, Mittal R. Nrf2: a potential therapeutic target for diabetic neuropathy. Inflammopharmacology. 2017;25:393–402.

Article  CAS  PubMed  Google Scholar 

Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–36.

Article  CAS  PubMed  Google Scholar 

Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74:2959–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang T-Y, Zhang X-Q, Chen A-L, Zhang J, Lv B-H, Ma M-H, et al. A comparative study of microbial community and functions of type 2 diabetes mellitus patients with obesity and healthy people. Appl Microbiol Biotechnol. 2020;104:7143–53.

Article  CAS  PubMed  Google Scholar 

Chen P-C, Chien Y-W, Yang S-C. The alteration of gut microbiota in newly diagnosed type 2 diabetic patients. Nutrition. 2019;63–64:51–6.

Article  PubMed  Google Scholar 

Yang R, Jia Q, Mehmood S, Ma S, Liu X. Genistein ameliorates inflammation and insulin resistance through mediation of gut microbiota composition in type 2 diabetic mice. Eur J Nutr. 2021;60:2155–68.

Article  CAS  PubMed  Google Scholar 

Kieler IN, Osto M, Hugentobler L, Puetz L, Gilbert MTP, Hansen T, et al. Diabetic cats have decreased gut microbial diversity and a lack of butyrate producing bacteria. Sci Rep. 2019;9:4822.

Article  PubMed  PubMed Central  Google Scholar 

Scheithauer TPM, Rampanelli E, Nieuwdorp M, Vallance BA, Verchere CB, van Raalte DH et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol. 2020;11.

Iatcu CO, Steen A, Covasa M. Gut microbiota and complications of Type-2 diabetes. Nutrients. 2021;14.

Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.

Article  CAS  PubMed  Google Scholar 

Chelakkot C, Choi Y, Kim D-K, Park HT, Ghim J, Kwon Y, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp Mol Med. 2018;50:e450–450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gradisteanu Pircalabioru G, Corcionivoschi N, Gundogdu O, Chifiriuc M-C, Marutescu LG, Ispas B, et al. Dysbiosis in the development of type I diabetes and Associated complications: from mechanisms to targeted gut microbes Manipulation therapies. Int J Mol Sci. 2021;22:2763.

Article  PubMed  PubMed Central  Google Scholar 

Yehualashet AS. Toll-like receptors as a potential drug target for diabetes Mellitus and Diabetes-associated complications. Diabetes Metab Syndr Obes. 2020;13:4763–77.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif