Unraveling the understudied influence of a lead variant in the 9p21 locus on the atherogenic index among type 2 diabetes patients with coronary artery disease

Cho H, Shen G-Q, Wang X, Wang F, Archacki S, Li Y, et al. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J Biol Chem. 2019;294(11):3881–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoff JA, Quinn L, Sevrukov A, Lipton RB, Daviglus M, Garside DB, et al. The prevalence of coronary arterycalcium among diabetic individuals without known coronary artery disease. J Am Coll Cardiol. 2003;41(6):1008–12.

Article  CAS  PubMed  Google Scholar 

Mahrooz A, Alizadeh A, Gohari G. The salt stimulation property of serum paraoxonase (PON1) could be a valuable factor in evaluating the enzyme status in ischemic stroke: the role of activity-determined PON1 192Q/R phenotypes. J Neurol Sci. 2014;338(1–2):197–202.

Article  CAS  PubMed  Google Scholar 

Hannou SA, Wouters K, Paumelle R, Staels B. Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs? Trends Endocrinol Metabolism. 2015;26(4):176–84.

Article  CAS  Google Scholar 

Mahrooz A, Alizadeh A, Hashemi-Soteh MB, Ghaffari-Cherati M, Hosseyni-Talei SR. The polymorphic variants rs3088442 and rs2292334 in the organic cation transporter 3 (OCT3) gene and susceptibility against type 2 diabetes: role of their interaction. Arch Med Res. 2017;48(2):162–8.

Article  CAS  PubMed  Google Scholar 

Mahrooz A, Hashemi-Soteh MB, Heydari M, Boorank R, Ramazani F, Mahmoudi A, et al. Paraoxonase 1 (PON1)-L55M among common variants in the coding region of the paraoxonase gene family may contribute to the glycemic control in type 2 diabetes. Clin Chim Acta. 2018;484:40–6.

Article  CAS  PubMed  Google Scholar 

Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316(5829):1331–6.

Article  CAS  PubMed  Google Scholar 

Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007;316(5829):1336–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kojima Y, Downing K, Kundu R, Miller C, Dewey F, Lancero H, et al. Cyclin-dependent kinase inhibitor 2B regulates efferocytosis and atherosclerosis. J Clin Investig. 2019;124(3):1083–97.

Article  Google Scholar 

McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316(5830):1488–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357(5):443–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helgadottir A, Thorleifsson G, Magnusson KP, Grétarsdottir S, Steinthorsdottir V, Manolescu A, et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24.

Article  CAS  PubMed  Google Scholar 

Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong Y, Sharma RB, Ly S, Stamateris RE, Jesdale WM, Alonso LC. CDKN2A/B T2D genome-wide association study risk SNPs impact locus gene expression and proliferation in human islets. Diabetes. 2018;67(5):872–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roman YM, McClish D, Price ET, Sabo RT, Woodward OM, Mersha TB, et al. Cardiometabolic genomics and pharmacogenomics investigations in Filipino americans: steps towards precision health and reducing health disparities. Am Heart J plus: Cardiol Res Pract. 2022;15:100136.

Google Scholar 

Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J, Keavney B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 2010;6(4):e1000899.

Article  PubMed  PubMed Central  Google Scholar 

Hribal M, Presta I, Procopio T, Marini M, Stančáková A, Kuusisto J, et al. Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B. Diabetologia. 2011;54(4):795–802.

Article  CAS  PubMed  Google Scholar 

Jonsson A, Ladenvall C, Ahluwalia TS, Kravic J, Krus U, Taneera J, et al. Effects of common genetic variants associated with type 2 diabetes and glycemic traits on α-and β-cell function and insulin action in humans. Diabetes. 2013;62(8):2978–83.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong Y, Sharma RB, Nwosu BU, Alonso LC. Islet biology, the CDKN2A/B locus and type 2 diabetes risk. Diabetologia. 2016;59(8):1579–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quispe R, Manalac RJ, Faridi KF, Blaha MJ, Toth PP, Kulkarni KR, et al. Relationship of the triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio to the remainder of the lipid profile: the very large database of Lipids-4 (VLDL-4) study. Atherosclerosis. 2015;242(1):243–50.

Article  CAS  PubMed  Google Scholar 

Viktorinova A, Svitekova K, Stecova A, Krizko M. Relationship between selected oxidative stress markers and lipid risk factors for cardiovascular disease in middle-aged adults and its possible clinical relevance. Clin Biochem. 2016;49(12):868–72.

Article  CAS  PubMed  Google Scholar 

Witka BZ, Oktaviani DJ, Marcellino M, Barliana MI, Abdulah R. Type 2 diabetes-associated genetic polymorphisms as potential disease predictors. Diabetes Metabolic Syndrome Obesity: Targets Therapy. 2019;12:2689.

Article  CAS  PubMed  Google Scholar 

Jin H, Kwak SH, Yoon JW, Lee S, Park KS, Won S, et al. Genome-Wide Association Study on Longitudinal Change in Fasting plasma glucose in Korean Population. Diabetes Metabolism J. 2023;47(2):255–66.

Article  Google Scholar 

Sultani R, Tong DC, Peverelle M, Lee YS, Baradi A, Wilson AM. Elevated triglycerides to high-density lipoprotein cholesterol (TG/HDL-C) ratio predicts long-term mortality in high-risk patients. Heart Lung Circulation. 2020;29(3):414–21.

Article  PubMed  Google Scholar 

Mahrooz A, Shokri Y, Variji A, Zargari M, Alizadeh A, Mehtarian E. Improved risk assessment of coronary artery disease by substituting paraoxonase 1 activity for HDL-C: novel cardiometabolic biomarkers based on HDL functionality. Nutr Metabolism Cardiovasc Dis. 2021;31(4):1166–76.

Article  CAS  Google Scholar 

Cheng X, Shi L, Nie S, Wang F, Li X, Xu C, et al. The same chromosome 9p21. 3 locus is associated with type 2 diabetes and coronary artery disease in a Chinese Han population. Diabetes. 2011;60(2):680–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehramiz M, Ghasemi F, Esmaily H, Tayefi M, Hassanian SM, Sadeghzade M, et al. Interaction between a variant of CDKN2A/B-gene with lifestyle factors in determining dyslipidemia and estimated cardiovascular risk: a step toward personalized nutrition. Clin Nutr. 2018;37(1):254–61.

Article  CAS  PubMed  Google Scholar 

Cha J, Aguayo-Mazzucato C, Thompson PJ. Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies. Front Endocrinol. 2023;14.

Chen Y, Wang X, Zhao Y, Shi X, Wang Y. Association of SLC30A8 (rs13266634), CDKN2A/2B (rs10811661) and TCF7L2 (rs7903146) with the insulin resistance in type 2 diabetes in Chinese Han population in Northeast part of China. Volume 10. International Journal of Clinical and Experimental Pathology 2017;3:3830–6.

Nosrati M, Safari M, Alizadeh A, Ahmadi M, Mahrooz A. The atherogenic index log (triglyceride/hdl-cholesterol) as a biomarker to identify type 2 diabetes patients with poor glycemic control. Int J Prev Med. 2021;12(1):160.

Article  PubMed  PubMed Central  Google Scholar 

Svensson P-A, Wahlstrand B, Olsson M, Froguel P, Falchi M, Bergman RN, et al. CDKN2B expression and subcutaneous adipose tissue expandability: possible influence of the 9p21 atherosclerosis locus. Biochem Biophys Res Commun. 2014;446(4):1126–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horswell SD, Fryer LG, Hutchison CE, Zindrou D, Speedy HE, Town M-M, et al. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients [S]. J Lipid Res. 2013;54(12):3491–505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruchat S-M, Elks CE, Loos RJ, Vohl M-C, Weisnagel SJ, Rankinen T, et al. Evidence of interaction between type 2 diabetes susceptibility genes and dietary fat intake for adiposity and glucose homeostasis-related phenotypes. Lifestyle Genomics. 2010;2(4–5):225–34.

Google Scholar 

Liu J, Wang L, Qian Y, Shen Q, Chen H, Ma H, et al. Analysis of the interaction effect of 48 SNPs and obesity on type 2 diabetes in Chinese Hans. BMJ Open Diabetes Res Care. 2020;8(2):e001638.

Article  PubMed  PubMed Central  Google Scholar 

Wei B, Liu Y, Li H, Peng Y, Luo Z. Effect of 9p21. 3 (lncRNA and CDKN2A/2B) variant on lipid profile. Front Cardiovasc Med. 2022;9:946289.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif