Regulatory roles of N6-methyladenosine (m6A) methylation in RNA processing and non-communicable diseases

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, et al. The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 2021;6:74. https://doi.org/10.1038/s41392-020-00450-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41. https://doi.org/10.1038/nrg.2016.93.

Article  CAS  PubMed  Google Scholar 

Liu N, Pan T. N6-methyladenosine–encoded epitranscriptomics. Nat Struct Mol Biol. 2016;23:98–102. https://doi.org/10.1038/nsmb.3162.

Article  CAS  PubMed  Google Scholar 

Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell. 2013;155:1409–21. https://doi.org/10.1016/j.cell.2013.10.047.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harcourt EM, Ehrenschwender T, Batista PJ, Chang HY, Kool ET. Identification of a selective polymerase enables detection of N(6)-methyladenosine in RNA. J Am Chem Soc. 2013;135:19079–82. https://doi.org/10.1021/ja4105792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang S, Lv W, Li T, Zhang S, Wang H, Li X, et al. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int. 2022;22:48. https://doi.org/10.1186/s12935-022-02452-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell. 2019;74:640–50. https://doi.org/10.1016/j.molcel.2019.04.025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cui Y, Wang X, Lin F, Li W, Zhao Y, Zhu F, et al. MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis. 2022;13:899–909. https://doi.org/10.14336/AD.2021.1023.

Article  PubMed  PubMed Central  Google Scholar 

Yang Y, Hsu PJ, Chen YS, Yang YG. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–24.https://doi.org/10.1038/s41422-018-0040-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42. https://doi.org/10.1038/nrm.2016.132.

Article  CAS  PubMed  Google Scholar 

Lee JH, Wang R, Xiong F, Krakowiak J, Liao Z, Nguyen PT, et al. Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol Cell. 2021;81:3368–3385.e9. https://doi.org/10.1016/j.molcel.2021.07.024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee JH, Hong J, Zhang Z, de la Peña Avalos B, Proietti CJ, Deamicis AR, et al. Regulation of telomere homeostasis and genomic stability in cancer by N6-adenosine methylation (m6A). Sci Adv. 2021;7:eabg7073. https://doi.org/10.1016/j.molcel.2021.07.024.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer. Mol Cancer. 2019;18:103. https://doi.org/10.1186/s12943-019-1033-z.

Article  PubMed  PubMed Central  Google Scholar 

Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N6-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17. https://doi.org/10.1038/s41422-018-0034-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. 2012;149:1635–46. https://doi.org/10.1016/j.cell.2012.05.003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016;534:575–8. https://doi.org/10.1038/nature18298.

Article  CAS  PubMed  Google Scholar 

Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24:177–89. https://doi.org/10.1038/cr.2014.3.10.1038/cr.2014.3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, et al. VIRMA mediates preferential m6A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10. https://doi.org/10.1038/s41421-018-0019-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–73. https://doi.org/10.1038/nature19342.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen J, Lv R, Ma H, Shen H, He C, Wang J, et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol Cell. 2018;69:1028–38.e6. https://doi.org/10.1016/j.molcel.2018.02.015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown JA, Kinzig CG, DeGregorio SJ, Steitz JA. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc Natl Acad Sci USA. 2016;113:14013–8. https://doi.org/10.1073/pnas.1614759113.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mendel M, Chen KM, Homolka D, Gos P, Pandey RR, McCarthy AA, et al. Methylation of structured RNA by the m6A writer METTL16 is essential for mouse embryonic development. Mol Cell. 2018;71:986–1000.e11. https://doi.org/10.1016/j.molcel.2018.08.004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warda AS, Kretschmer J, Hackert P, Lenz C, Urlaub H, Höbartner C, et al. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep. 2017;18:2004–14. https://doi.org/10.15252/embr.201744940.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doxtader KA, Wang P, Scarborough AM, Seo D, Conrad NK, Nam Y. Structural basis for regulation of METTL16, an S-adenosylmethionine homeostasis factor. Mol Cell. 2018;71:1001–1011.e4. https://doi.org/10.1016/j.molcel.2018.07.025 .

Article  CAS  PubMed  PubMed Central  Google Scholar 

Su R, Dong L, Li Y, Gao M, He PC, Liu W, et al. METTL16 exerts an m6A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 2022;24:205–16. https://doi.org/10.1038/s41556-021-00835-2 .

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma H, Wang X, Cai J, Dai Q, Natchiar SK, Lv R, et al. N6-methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15:88–94. https://doi.org/10.1038/s41589-018-0184-3.

留言 (0)

沒有登入
gif