Focused cancer pathway analysis revealed unique therapeutic targets in retinoblastoma

Balaji S, Santhi R, Kim U, Muthukkaruppan V, Priya CG, Vanniarajan A. Cancer stem cells with overexpression of neuronal markers enhance chemoresistance and invasion in retinoblastoma. Curr Cancer Drug Targets. 2020;20(9):710–9. https://doi.org/10.2174/1568009620666200504112711.

Article  CAS  PubMed  Google Scholar 

Thirumalairaj K, Abraham A, Devarajan B, Gaikwad N, Kim U, Muthukkaruppan V, et al. A stepwise strategy for rapid and cost-effective RB1 screening in Indian retinoblastoma patients. J Hum Genet. 2015;60(9):547–52. https://doi.org/10.1038/jhg.2015.62.

Article  PubMed  Google Scholar 

Mendonca V, Evangelista AC, B PM, MA MM, Faria P, Lucena E, et al. Molecular alterations in retinoblastoma beyond RB1. Exp Eye Res. 2021;211:108753.https://doi.org/10.1016/j.exer.2021.108753

Theriault BL, Dimaras H, Gallie BL, Corson TW. The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol. 2014;42(1):33–52. https://doi.org/10.1111/ceo.12132.

Article  PubMed  Google Scholar 

Kooi IE, Mol BM, Moll AC, van der Valk P, de Jong MC, de Graaf P, et al. Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression. EBioMedicine. 2015;2(7):660–70. https://doi.org/10.1016/j.ebiom.2015.06.022.

Article  PubMed  PubMed Central  Google Scholar 

Chakraborty S, Khare S, Dorairaj SK, Prabhakaran VC, Prakash DR, Kumar A. Identification of genes associated with tumorigenesis of retinoblastoma by microarray analysis. Genomics. 2007;90(3):344–53. https://doi.org/10.1016/j.ygeno.2007.05.002.

Article  CAS  PubMed  Google Scholar 

Ganguly A, Shields CL. Differential gene expression profile of retinoblastoma compared to normal retina. Mol Vis. 2010;16:1292–303, https://pubmed.ncbi.nlm.nih.gov/20664703

McEvoy J, Flores-Otero J, Zhang J, Nemeth K, Brennan R, Bradley C, et al. Coexpression of normally incompatible developmental pathways in retinoblastoma genesis. Cancer Cell. 2011;20(2):260–75. https://doi.org/10.1016/j.ccr.2011.07.005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim U, Rathi G, Chowdhary G, Srinavasan KG, Shanthi R, Krishna RSP. Accuracy of preoperative imaging in predicting optic nerve invasion in retinoblastoma: a retrospective study. Indian J Ophthalmol. 2019;67(12):2019–22. https://doi.org/10.4103/ijo.IJO_1611_18.

Article  PubMed  PubMed Central  Google Scholar 

Shields CL, Shields JA, Baez K, Cater JR, De Potter P. Optic nerve invasion of retinoblastoma. Metastatic potential and clinical risk factors. Cancer. 1994;73(3):692–8.https://doi.org/10.1002/1097-0142(19940201)73:3<692::aid-cncr2820730331>3.0.co;2-8

Shields CL, Shields JA, Baez KA, Cater J, Potter PVD. Choroidal invasion of retinoblastoma: metastatic potential and clinical risk factors. Br J Ophthalmol. 1993;77(9):544. https://doi.org/10.1136/bjo.77.9.544.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bartha Á, Győrffy B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int J Mol Sci. 2021;22(5).https://doi.org/10.3390/ijms22052622

Balaji S, Vanniarajan A. Implication of pseudo reference genes in normalization of data from reverse transcription-quantitative pcR. Gene. 2020. https://doi.org/10.1016/j.gene.2020.144948;10.1016/j.gene.2020.144948:144948.10.1016/j.gene.2020.144948.

Article  PubMed  Google Scholar 

Laurell H, Iacovoni JS, Abot A, Svec D, Maoret JJ, Arnal JF, et al. Correction of RT-qPCR data for genomic DNA-derived signals with ValidPrime. Nucleic Acids Res. 2012;40(7):e51. https://doi.org/10.1093/nar/gkr1259.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francis JH, Richards AL, Mandelker DL, Berger MF, Walsh MF, Dunkel IJ, et al. Molecular changes in retinoblastoma beyond rb1: findings from next-generation sequencing. Cancers (Basel). 2021;13(1).https://doi.org/10.3390/cancers13010149

Kandalam M, Mitra M, Subramanian K, Biswas J. Molecular pathology of retinoblastoma. Middle East Afr J Ophthalmol. 2010;17(3):217–23. https://doi.org/10.4103/0974-9233.65498.

Article  PubMed  PubMed Central  Google Scholar 

Sun Y, Cheng Z, Liu S. MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med. 2022;28(1):128. https://doi.org/10.1186/s10020-022-00555-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang J, Li Y, Han Y, Feng Y, Zhou M, Zong C, et al. Single-cell transcriptome profiling reveals intratumoural heterogeneity and malignant progression in retinoblastoma. Cell Death Dis. 2021;12(12):1100. https://doi.org/10.1038/s41419-021-04390-4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu C, Yang J, Xiao W, Jiang Z, Chen S, Guo D, et al. Single-cell characterization of malignant phenotypes and microenvironment alteration in retinoblastoma. Cell Death Dis. 2022;13(5):438. https://doi.org/10.1038/s41419-022-04904-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xian F, Zhao C, Huang C, Bie J, Xu G. The potential role of CDC20 in tumorigenesis, cancer progression and therapy: a narrative review. Medicine (Baltimore). 2023;102(36):e35038. https://doi.org/10.1097/MD.0000000000035038.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Zhou L, Wang S, Wang M, Wu S. Exploration of retinoblastoma pathogenesis with bioinformatics. Transl Cancer Res. 2021;10(7):3527–37.https://doi.org/10.21037/tcr-21-1034

Esposito F, Giuffrida R, Raciti G, Puglisi C, Forte S. Wee1 kinase: a potential target to overcome tumor resistance to therapy. Int J Mol Sci. 2021;22(19).https://doi.org/10.3390/ijms221910689

Li A, Yang J, Zhang T, Li L, Li M. Long Noncoding RNA TRPM2-AS Promotes the Growth, Migration, and Invasion of Retinoblastoma via miR-497/WEE1 Axis. Front Pharmacol. 2021;12.https://doi.org/10.3389/fphar.2021.592822

Kim N, Ko Y, Shin Y, Park J, Lee AJ, Kim KW, et al. Comprehensive analysis for anti-cancer target-indication prioritization of placental growth factor inhibitor (PGF) by use of omics and patient survival data. Biology. 2023;12(7):970, https://www.mdpi.com/2079-7737/12/7/970

Aoki S, Inoue K, Klein S, Halvorsen S, Chen J, Matsui A, et al. Placental growth factor promotes tumour desmoplasia and treatment resistance in intrahepatic cholangiocarcinoma. Gut. 2022;71(1):185–93. https://doi.org/10.1136/gutjnl-2020-322493.

Article  CAS  PubMed  Google Scholar 

Liu J, Zhan X, Li M, Li G, Zhang P, Xiao Z, et al. Mitochondrial proteomics of nasopharyngeal carcinoma metastasis. BMC Med Genomics. 2012;5:62. https://doi.org/10.1186/1755-8794-5-62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nath S, Chowdhury A, Dey S, Roychoudhury A, Ganguly A, Bhattacharyya D, et al. Deregulation of Rb-E2F1 axis causes chromosomal instability by engaging the transactivation function of Cdc20-anaphase-promoting complex/cyclosome. Mol Cell Biol. 2015;35(2):356–69. https://doi.org/10.1128/MCB.00868-14.

Article  CAS  PubMed  Google Scholar 

Poppy Roworth A, Ghari F, La Thangue NB. To live or let die - complexity within the E2F1 pathway. Mol Cell Oncol. 2015;2(1):e970480. https://doi.org/10.4161/23723548.2014.970480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamidi M, Eriz A, Mitxelena J, Fernandez-Ares L, Aurrekoetxea I, Aspichueta P, et al. targeting e2f sensitizes prostate cancer cells to drug-induced replication stress by promoting unscheduled CDK1 activity. Cancers (Basel). 2022;14(19).https://doi.org/10.3390/cancers14194952

Uxa S, Castillo-Binder P, Kohler R, Stangner K, Müller GA, Engeland K. Ki-67 gene expression. Cell Death Differ. 2021;28(12):3357–70. https://doi.org/10.1038/s41418-021-00823-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blanchet E, Annicotte JS, Lagarrigue S, Aguilar V, Clape C, Chavey C, et al. E2F transcription factor-1 regulates oxidative metabolism. Nat Cell Biol. 2011;13(9):1146–52. https://doi.org/10.1038/ncb2309.

Article  CAS  PubMed  Google Scholar 

Huang HC, Shi J, Orth JD, Mitchison TJ. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell. 2009;16(4):347–58. https://doi.org/10.1016/j.ccr.2009.08.020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mrouj K, Andres-Sanchez N, Dubra G, Singh P, Sobecki M, Chahar D, et al. Ki-67 regulates global gene expression and promotes sequential stages of carcinogenesis. Proc Natl Acad Sci U S A. 2021;118(10).https://doi.org/10.1073/pnas.2026507118

Murrow LM, Garimella SV, Jones TL, Caplen NJ, Lipkowitz S. Identification of WEE1 as a potential molecular target in cancer cells by RNAi screening of the human tyrosine kinome. Breast Cancer Res Treat. 2010;122(2):347–57. https://doi.org/10.1007/s10549-009-0571-2.

Article  CAS  PubMed  Google Scholar 

Jin T, Xu W, Chen R, Shen L, Gao J, Xu L, et al. Discovery of potential WEE1 inhibitors via hybrid virtual screening. Front Pharmacol. 2023;14:1298245. https://doi.org/10.3389/fphar.2023.1298245.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang C, Li Z, Li Q, Xia Y, Chan C-C, Yuan X, et al. Preclinical evaluation of SC0191, a small molecule inhibitor of Wee1 kinase. J Clin Oncol. 2020;38(15_suppl):e15637-e.https://doi.org/10.1200/JCO.2020.38.15_suppl.e15637

Bruno S, Ghelli Luserna di Rora A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res. 2022;41(1):159.https://doi.org/10.1186/s13046-022-02363-9

Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7(4):4062–76.https://doi.org/10.18632/oncotarget.6768

Kim ME, Xu L, Prabakar RK, Shen L, Peng CC, Kuhn P, et al. Aqueous humor as a liquid biopsy for retinoblastoma: clear corneal paracentesis and genomic analysis. J Vis Exp. 2021. https://doi.org/10.3791/62939;10.3791/62939(175).10.3791/62939.

Article  PubMed  Google Scholar 

Levy J, Frenkel S, Baras M, Neufeld M, Pe’er J. Calcification in retinoblastoma: histopathologic findings and statistical analysis of 302 cases. Br J Ophthalmol. 2011;95(8):1145–50. https://doi.org/10.1136/bjo.2010.193961.

Article  PubMed  Google Scholar 

Wang L, Zhang J, Wan L, Zhou X, Wang Z, Wei W. Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacol Ther. 2015;151:141–51. https://doi.org/10.1016/j.pharmthera.2015.04.002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheung CHY, Hsu CL, Chen KP, Chong ST, Wu CH, Huang HC, et al. MCM2-regulated functional networks in lung cancer by multi-dimensional proteomic approach. Sci Rep. 2017;7(1):13302. htt

留言 (0)

沒有登入
gif