Comparative Analysis of Gait Speed Measurement Protocols: Static Start Versus Dynamic Start in a Cross-Sectional Study Using Light Detection and Ranging

Shafrin J, Sullivan J, Goldman DP, Gill TM. The association between observed mobility and quality of life in the near elderly. PLoS One. 2017;12:e0182920. doi:https://doi.org/10.1371/journal.pone.0182920.

Article  PubMed  PubMed Central  Google Scholar 

Peel NM, Kuys SS, Klein K. Gait Speed as a Measure in Geriatric Assessment in Clinical Settings: A Systematic Review. The Journals of Gerontology: Series A. 2012;68:39–46. doi:https://doi.org/10.1093/gerona/gls174.

Google Scholar 

Studenski S. Bradypedia: is gait speed ready for clinical use? J Nutr Health Aging. 2009;13:878–880. doi:https://doi.org/10.1007/s12603-009-0245-0.

Article  CAS  PubMed  Google Scholar 

Yanishi M, Tsukaguchi H, Kimura Y, et al. Evaluation of physical activity in sarcopenic conditions of kidney transplantation recipients. Int Urol Nephrol. 2017;49:1779–1784. doi:https://doi.org/10.1007/s11255-017-1661-4.

Article  PubMed  Google Scholar 

Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging. 2018;22:1148–1161. doi:https://doi.org/10.1007/s12603-018-1139-9.

Article  CAS  PubMed  Google Scholar 

Studenski SA, Peters KW, Alley DE, et al. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69:547–558. doi:https://doi.org/10.1093/gerona/glu010.

Article  PubMed  PubMed Central  Google Scholar 

Studenski S, Perera S, Patel K, et al. Gait speed and survival in older adults. Jama. 2011;305:50–58. doi:https://doi.org/10.1001/jama.2010.1923.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dommershuijsen LJ, Isik BM, Darweesh SKL, et al. Unraveling the Association Between Gait and Mortality—One Step at a Time. The Journals of Gerontology: Series A. 2019;75:1184–1190. doi:https://doi.org/10.1093/gerona/glz282.

Google Scholar 

Middleton A, Fritz SL, Lusardi M. Walking speed: the functional vital sign. J Aging Phys Act. 2015;23:314–322. doi:https://doi.org/10.1123/japa.2013-0236.

Article  PubMed  Google Scholar 

Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi:https://doi.org/10.1093/ageing/afy169.

Article  PubMed  Google Scholar 

Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21:300–307.e302. doi:https://doi.org/10.1016/j.jamda.2019.12.012.

Article  PubMed  Google Scholar 

Adam CE, Fitzpatrick AL, Leary CS, et al. The Association between Gait Speed and Falls in Community Dwelling Older Adults with and without Mild Cognitive Impairment. Int J Environ Res Public Health. 2021;18. doi:https://doi.org/10.3390/ijerph18073712.

Lou N, Chi CH, Chen XD, et al. Sarcopenia in overweight and obese patients is a predictive factor for postoperative complication in gastric cancer: A prospective study. Eur J Surg Oncol. 2017;43:188–195. doi:https://doi.org/10.1016/j.ejso.2016.09.006.

Article  CAS  PubMed  Google Scholar 

Yuki A, Ando F, Otsuka R, Shimokata H. Sarcopenia based on the Asian Working Group for Sarcopenia criteria and all-cause mortality risk in older Japanese adults. Geriatr Gerontol Int. 2017;17:1642–1647. doi:https://doi.org/10.1111/ggi.12946.

Article  PubMed  Google Scholar 

Kim S, Kim M, Won CW. Validation of the Korean Version of the SARC-F Questionnaire to Assess Sarcopenia: Korean Frailty and Aging Cohort Study. J Am Med Dir Assoc. 2018;19:40–45.e41. doi:https://doi.org/10.1016/j.jamda.2017.07.006.

Article  PubMed  Google Scholar 

Fukuoka Y, Narita T, Fujita H, et al. Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. J Diabetes Investig. 2019;10:322–330. doi:https://doi.org/10.1111/jdi.12908.

Article  CAS  PubMed  Google Scholar 

Macfarlane PA, Looney MA. Walkway length determination for steady state walking in young and older adults. Res Q Exerc Sport. 2008;79:261–267. doi:https://doi.org/10.1080/02701367.2008.10599489.

Article  PubMed  Google Scholar 

Stuck AK, Bachmann M, Füllemann P, Josephson KR, Stuck AE. Effect of testing procedures on gait speed measurement: A systematic review. PLoS One. 2020;15:e0234200. doi:https://doi.org/10.1371/journal.pone.0234200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Phan-Ba R, Calay P, Grodent P, et al. A corrected version of the Timed-25 Foot Walk Test with a dynamic start to capture the maximum ambulation speed in multiple sclerosis patients. NeuroRehabilitation. 2012;30:261–266. doi:https://doi.org/10.3233/nre-2012-0754.

Article  CAS  PubMed  Google Scholar 

Kim M, Won CW. Combinations of gait speed testing protocols (automatic vs manual timer, dynamic vs static start) can significantly influence the prevalence of slowness: Results from the Korean Frailty and Aging Cohort Study. Arch Gerontol Geriatr. 2019;81:215–221. doi:https://doi.org/10.1016/j.archger.2018.12.009.

Article  PubMed  Google Scholar 

Krumpoch S, Lindemann U, Rappl A, et al. The effect of different test protocols and walking distances on gait speed in older persons. Aging Clinical and Experimental Research. 2021;33:141–146. doi:https://doi.org/10.1007/s40520-020-01703-z.

Article  PubMed  Google Scholar 

Graham JE, Ostir GV, Kuo YF, Fisher SR, Ottenbacher KJ. Relationship between test methodology and mean velocity in timed walk tests: a review. Arch Phys Med Rehabil. 2008;89:865–872. doi:https://doi.org/10.1016/j.apmr.2007.11.029.

Article  PubMed  PubMed Central  Google Scholar 

Lindemann U, Najafi B, Zijlstra W, et al. Distance to achieve steady state walking speed in frail elderly persons. Gait Posture. 2008;27:91–96. doi:https://doi.org/10.1016/j.gaitpost.2007.02.005.

Article  CAS  PubMed  Google Scholar 

Yoon S, Jung HW, Jung H, et al. Development and Validation of 2D-LiDAR-Based Gait Analysis Instrument and Algorithm. Sensors (Basel). 2021;21. doi:https://doi.org/10.3390/s21020414.

Jung HW, Roh HC, Kim SW, et al. Cross-Comparisons of Gait Speeds by Automatic Sensors and a Stopwatch to Provide Converting Formula Between Measuring Modalities. Ann Geriatr Med Res. 2019;23:71–76. doi:https://doi.org/10.4235/agmr.19.0016.

Article  PubMed  PubMed Central  Google Scholar 

Jung HW, Roh H, Cho Y, et al. Validation of a Multi-Sensor-Based Kiosk for Short Physical Performance Battery. J Am Geriatr Soc. 2019;67:2605–2609. doi:https://doi.org/10.1111/jgs.16135.

Article  PubMed  Google Scholar 

Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94. doi:https://doi.org/10.1093/geronj/49.2.m85.

Article  CAS  PubMed  Google Scholar 

Bohannon RW, Glenney SS. Minimal clinically important difference for change in comfortable gait speed of adults with pathology: a systematic review. J Eval Clin Pract. 2014;20:295–300. doi:https://doi.org/10.1111/jep.12158.

Article  PubMed  Google Scholar 

van Herk IE, Arendzen JH, Rispens P. Ten-metre walk, with or without a turn? Clin Rehabil. 1998;12:30–35. doi:https://doi.org/10.1191/026921598667081596.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif