Asymmetry between the dorsal and ventral digging valves of the female locust: function and mechanics

Hosoi AE, Goldman DI. Beneath our feet: strategies for locomotion in granular media. Annu Rev Fluid Mech. 2015;47(1):431–53. https://doi.org/10.1146/annurev-fluid-010313-141324.

Article  Google Scholar 

Vincent JFV. How does the female locust dig her oviposition hole? J Entomol Ser Gen Entomol. 1976;50(3):175–81.

Google Scholar 

Hanlon RT, Watson AC, Barbosa A. A “mimic octopus” in the Atlantic: flatfish mimicry and camouflage by Macrotritopus defilippi. Biol Bull. 2010;218(1):15–24. https://doi.org/10.1086/BBLv218n1p15.

Article  PubMed  Google Scholar 

Brett RA. 5. The ecology of naked mole-rat colonies: burrowing, food, and limiting factors. In 5. The Ecology of Naked Mole-Rat Colonies: Burrowing, Food, and Limiting Factors; Princeton University Press, 2017; pp 137–184. https://doi.org/10.1515/9781400887132-008.

Bennet-Clark HC. The tuned singing burrow of mole crickets. J Exp Biol. 1987;128(1):383–409. https://doi.org/10.1242/jeb.128.1.383.

Article  Google Scholar 

Pough FH. The burrowing ecology of the sand lizard. Uma notata Copeia. 1970;1970:145. https://doi.org/10.2307/1441982.

Article  Google Scholar 

McColloch JW, Hayes WmP. The reciprocal relation of soil and insects. Ecology. 1922;3(4):288–301. https://doi.org/10.2307/1929431.

Article  Google Scholar 

Chen P-Y, McKittrick J, Meyers MA. Biological materials: functional adaptations and bioinspired designs. Prog Mater Sci. 2012;57(8):1492–704. https://doi.org/10.1016/j.pmatsci.2012.03.001.

Article  CAS  Google Scholar 

Thompson KJ, Jones AD, Miller SA. On the origin of grasshopper oviposition behavior: structural homology in pregenital and genital motor systems. Brain Behav Evol. 2014;83(4):247–65. https://doi.org/10.1159/000360932.

Article  PubMed  Google Scholar 

Qadri Ma H. On the development of the genitalia and their ducts of orthopteroid insects. Trans Ent Soc Lond. 1940, 90 (6), 121–175.

Schumann H, Matsuda R. Morphology and evolution of the insect abdomen with special reference to developmental patterns and their bearings upon systematics. Intern Ser Pure Appl Biol. 1978;54:392–3. https://doi.org/10.1002/mmnz.19780540213.

Article  Google Scholar 

Das R, Ayali A, Guershon M, Ibraheem A, Perlson E, Pinchasik B-E. The biomechanics of ultra-stretchable nerves iScience. 2022;25(11): 105295. https://doi.org/10.1016/j.isci.2022.105295.

Article  CAS  PubMed  Google Scholar 

Thompson KJ. Oviposition digging in the grasshopper. II. Descending neural control. J Exp Biol. 1986;122:413–25. https://doi.org/10.1242/jeb.122.1.413.

Article  CAS  PubMed  Google Scholar 

Das R, Gershon S, Bar-On B, Tadayon M, Ayali A, Pinchasik B-E. The biomechanics of the locust ovipositor valves: a unique digging apparatus. J R Soc Interf. 2022;19:20210955. https://doi.org/10.1098/rsif.2021.0955.

Article  Google Scholar 

Rose U, Seebohm G, Hustert R. The role of internal pressure and muscle activation during locust oviposition. J Insect Physiol. 2000;46(1):69–80. https://doi.org/10.1016/S0022-1910(99)00103-1.

Article  CAS  PubMed  Google Scholar 

Menon C, Vincent JFV, Lan N, Bilhaut L, Ellery A, Gao Y, Zangani D, Carosio S, Manning C, Jaddou M, Eckersley S. Bio-inspired micro-drills for future planetary exploration. In CANEUS2006: MNT for Aerospace Applications; ASMEDC: Toulouse, France, 2006; 117–128. https://doi.org/10.1115/CANEUS2006-11022.

Raimondo De Laurentis; Donato Zangani. ACT-RPT-BIO-GSP-04L27b-H9-Bionics and space system design - a deployable digging mechanism for sampling below planetary surfaces 2005.

Bar-On B, Barth FG, Fratzl P, Politi Y. Multiscale structural gradients enhance the biomechanical functionality of the spider fang. Nat Commun. 2014;5(1):3894. https://doi.org/10.1038/ncomms4894.

Article  CAS  PubMed  Google Scholar 

Tadayon M, Younes-Metzler O, Shelef Y, Zaslansky P, Rechels A, Berner A, Zolotoyabko E, Barth FG, Fratzl P, Bar-On B, Politi Y. Adaptations for wear resistance and damage resilience: micromechanics of spider cuticular “tools.” Adv Funct Mater. 2020;30(32):2000400. https://doi.org/10.1002/adfm.202000400.

Article  CAS  Google Scholar 

Hörnschemeyer T, Bond J, Young PG. Analysis of the functional morphology of mouthparts of the Beetle Priacma Serrata, and a discussion of possible food sources. J Insect Sci. 2013;13(126):1–14. https://doi.org/10.1673/031.013.12601.

Article  Google Scholar 

Das R, Yadav RN, Sihota P, Uniyal P, Kumar N, Bhushan B. Biomechanical evaluation of wasp and honeybee stingers. Sci Rep. 2018;8(1):14945. https://doi.org/10.1038/s41598-018-33386-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kundanati L, Gundiah N. Biomechanics of substrate boring by fig wasps. J Exp Biol. 2014;217(11):1946–54. https://doi.org/10.1242/jeb.098228.

Article  PubMed  Google Scholar 

Bar-On B. On the form and bio-mechanics of venom-injection elements. Acta Biomater. 2019;85:263–71. https://doi.org/10.1016/j.actbio.2018.12.030.

Article  PubMed  Google Scholar 

Anderson PSL. Making a point: shared mechanics underlying the diversity of biological puncture. J Exp Biol. 2018;221(22):jeb187294. https://doi.org/10.1242/jeb.187294.

Article  PubMed  Google Scholar 

Bar-On B. The effect of structural curvature on the load-bearing characteristics of biomechanical elements. J Mech Behav Biomed Mater. 2023;138: 105569. https://doi.org/10.1016/j.jmbbm.2022.105569.

Article  PubMed  Google Scholar 

Calderón AA, Ugalde JC, Chang L, Zagal JC, Pérez-Arancibia NO. An earthworm-inspired soft robot with perceptive artificial skin*. Bioinspir Biomim. 2019;14(5): 056012. https://doi.org/10.1088/1748-3190/ab1440.

Article  PubMed  Google Scholar 

Russell RA. CRABOT: a biomimetic burrowing robot designed for underground chemical source location. Adv Robot. 2011;25(1–2):119–34. https://doi.org/10.1163/016918610X538516.

Article  Google Scholar 

Winter AGV, Deits RLH, Dorsch DS, Slocum AH, Hosoi AE. Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation. Bioinspir Biomim. 2014;9(3):036009. https://doi.org/10.1088/1748-3182/9/3/036009.

Article  CAS  PubMed  Google Scholar 

Li D, Huang S, Tang Y, Marvi H, Tao J, Aukes DM. Compliant fins for locomotion in granular media. IEEE Robot Autom Lett. 2021;6(3):5984–91. https://doi.org/10.1109/LRA.2021.3084877.

Article  Google Scholar 

Naclerio ND, Karsai A, Murray-Cooper M, Ozkan-Aydin Y, Aydin E, Goldman DI, Hawkes EW. Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci Robot. 2021;6(55):eabe2922. https://doi.org/10.1126/scirobotics.abe2922.

Article  PubMed  Google Scholar 

Kobo D, Pinchasik B-E. Backswimmer-inspired miniature 3D-printed robot with buoyancy autoregulation through controlled nucleation and release of microbubbles. Adv Intell Syst. 2022;4(6):2200010. https://doi.org/10.1002/aisy.202200010.

Article  Google Scholar 

Filc O, Gilon H, Gershon S, Ribak G, Pinchasik B. Tailoring the mechanical properties of high-fidelity, beetle-inspired, 3D-printed wings improves their aerodynamic performance. Adv Eng Mater. 2023;25:2300861. https://doi.org/10.1002/adem.202300861.

Article  CAS  Google Scholar 

Goriely, A. The mathematics and mechanics of biological growth; Interdisciplinary Applied Mathematics; Springer New York: New York, 2017; Vol. 45. https://doi.org/10.1007/978-0-387-87710-5.

Raup DM, Michelson A. Theoretical morphology of the coiled shell. Science (American Association for the Advancement of Science). 1965;147(3663):1294–5.

Article  CAS  Google Scholar 

Illert, C. Formulation and Solution of the Classical Seashell Problem. 21.

Cortie MB. Digital seashells. Comput Graph. 1993;17(1):79–84. https://doi.org/10.1016/0097-8493(93)90054-D.

Article  Google Scholar 

Harary G, Tal A. The natural 3D spiral. Comput Graph Forum. 2011;30(2):237–46. https://doi.org/10.1111/j.1467-8659.2011.01855.x.

Article  Google Scholar 

Evans AR, Pollock TI, Cleuren SGC, Parker WMG, Richards HL, Garland KLS, Fitzgerald EMG, Wilson TE, Hocking DP, Adams JW. A universal power law for modelling the growth and form of teeth, claws, horns, thorns, beaks, and shells. BMC Biol. 2021;19(1):58. https://doi.org/10.1186/s12915-021-00990-w.

Article  PubMed  PubMed Central  Google Scholar 

Faghih Shojaei M, Mohammadi V, Rajabi H, Darvizeh A. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume. J Mech Behav Biomed Mater. 2012;16:38–54. https://doi.org/10.1016/j.jmbbm.2012.08.006.

Article  CAS  PubMed  Google Scholar 

Lakes-Harlan, R, Strauß, J. Functional morphology and evolutionary diversity of vibration receptors in insects. In Studying Vibrational Communication; Cocroft, R. B., Gogala, M., Hill, P. S. M., Wessel, A., Eds.; Animal Signals and Communication; Springer: Berlin, Heidelberg, 2014; pp 277–302. https://doi.org/10.1007/978-3-662-43607-3_14.

McKyes E, Ali OS. The cutting of soil by narrow blades. J Terramech. 1977;14(2):43–58. https://doi.org/10.1016/0022-4898(77)90001-5.

Article  Google Scholar 

Godwin, RJ, Spoor, G, Soomro, MS. The effect of tine arrangement on soil forces and disturbance. J Agric Eng Res (UK) 1984.

Coulomb, CA. Essai Sur Une Application Des Regles de Maximis et Minimis a Quelques Problemes de Statique Relatifs a l’Architecture. Mem Div Sav Acad. 1773.

Godwin RJ. A review of the effect of implement geometry on soil failure and implement forces. Soil Tillage Res. 2007;97(2):331–40. https://doi.org/10.1016/j.still.2006.06.010.

Article  Google Scholar 

Lichtenegger HC, Schöberl T, Ruokolainen JT, Cross JO, Heald SM, Birkedal H, Waite JH, Stucky GD. Zinc and mechanical prowess in the jaws of Nereis, a marine worm. PNAS. 2003;100(16):9144–9. https://doi.org/10.1073/pnas.1632658100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lichtenegger HC, Schöberl T, Bartl MH, Waite H, Stucky GD. High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science. 2002;298(5592):389–92. https://doi.org/10.1126/science.1075433.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif