The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration

McCulloch K, Litherland GJ, Rai TS. Cellular senescence in osteoarthritis pathology. Aging Cell. 2017;16(2):210–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toh WS, Brittberg M, Farr J, Foldager CB, Gomoll AH, Hui JH, et al. Cellular senescence in aging and osteoarthritis. Acta Orthop. 2016;87(sup363):6–14.

Article  PubMed  PubMed Central  Google Scholar 

Zhang XX, He SH, Liang X, Li W, Li TF, Li DF. Aging, cell senescence, the Pathogenesis and targeted therapies of Osteoarthritis. Front Pharmacol. 2021;12:728100.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y, Shen S, Shi Y, Tian N, Zhou Y, Zhang X. Senolytics: eliminating senescent cells and alleviating intervertebral disc degeneration. Front Bioeng Biotechnol. 2022;10:823945.

Article  PubMed  PubMed Central  Google Scholar 

Fang H, Deng Z, Liu J, Chen S, Deng Z, Li W. The mechanism of bone remodeling after bone aging. Clin Interv Aging. 2022;17:405–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bordon Y. Protect the species with mitohormesis? Nat Rev Immunol. 2021;21(7):407.

Article  CAS  PubMed  Google Scholar 

Barzegari A, Aaboulhassanzadeh S, Landon R, Gueguen V, Meddahi-Pellé A, Parvizpour S, et al. Mitohormesis and mitochondrial dynamics in the regulation of stem cell fate. J Cell Physiol. 2022;237(9):3435–48.

Article  CAS  PubMed  Google Scholar 

Yun J, Finkel T, Mitohormesis. Cell Metab. 2014;19(5):757–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nat Med. 2014;20(7):709–11.

Article  CAS  PubMed  Google Scholar 

Cox CS, McKay SE, Holmbeck MA, Christian BE, Scortea AC, Tsay AJ, et al. Mitohormesis in mice via sustained basal activation of mitochondrial and antioxidant signaling. Cell Metab. 2018;28(5):776–e865.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoon TK, Lee CH, Kwon O, Kim MS. Exercise, Mitohormesis, and mitochondrial ORF of the 12S rRNA Type-C (MOTS-c). Diabetes Metab J. 2022;46(3):402–13.

Article  PubMed  PubMed Central  Google Scholar 

Kolb H, Kempf K, Röhling M, Lenzen-Schulte M, Schloot NC, Martin S. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 2021;19(1):313.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive responses to Hypoxia and/or Hyperoxia in humans. Antioxid Redox Signal. 2022.

Pohjoismäki JLO, Goffart S. Adaptive and pathological outcomes of Radiation stress-Induced Redox Signaling. Antioxid Redox Signal. 2022;37(4–6):336–48.

Article  PubMed  Google Scholar 

Meyer JN, Leung MC, Rooney JP, Sendoel A, Hengartner MO, Kisby GE, et al. Mitochondria as a target of environmental toxicants. Toxicol Sci. 2013;134(1):1–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ristow M, Schmeisser K, Mitohormesis. Promoting Health and Lifespan by increased levels of reactive oxygen species (ROS). Dose Response. 2014;12(2):288–341.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Woodhead JST, Merry TL. Mitochondrial-derived peptides and exercise. Biochim Biophys Acta Gen Subj. 2021;1865(12):130011.

Article  CAS  PubMed  Google Scholar 

Qureshi MA, Haynes CM, Pellegrino MW. The mitochondrial unfolded protein response: signaling from the powerhouse. J Biol Chem. 2017;292(33):13500–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Volume 337. New York, NY: Science; 2012. pp. 1062–5. 6098.

Google Scholar 

Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg HC, Suetta C, Krustrup P, et al. Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol. 2017;595(9):2839–47.

Article  CAS  PubMed  Google Scholar 

Yoo SM, Jung YK. A Molecular Approach to Mitophagy and mitochondrial dynamics. Mol Cells. 2018;41(1):18–26.

CAS  PubMed  PubMed Central  Google Scholar 

Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell. 2015;163(3):560–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation responses: epigenetic, metabolic, and signaling impacts. Int J Mol Sci. 2021;22(20).

Mitsuishi Y, Motohashi H, Yamamoto M. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol. 2012;2:200.

Article  PubMed  PubMed Central  Google Scholar 

Zamponi E, Zamponi N, Coskun P, Quassollo G, Lorenzo A, Cannas SA, et al. Nrf2 stabilization prevents critical oxidative damage in Down syndrome cells. Aging Cell. 2018;17(5):e12812.

Article  PubMed  PubMed Central  Google Scholar 

Wang P, Geng J, Gao J, Zhao H, Li J, Shi Y, et al. Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun. 2019;10(1):755.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res. 2020;43(3):286–96.

Article  CAS  PubMed  Google Scholar 

Jain AK, Jaiswal AK. GSK-3beta acts upstream of fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem. 2007;282(22):16502–10.

Article  CAS  PubMed  Google Scholar 

Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by mitochondrial reactive oxygen species in Physiology and Pathology. Biomolecules. 2020;10(2).

Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 2008;103(11):1232–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murata H, Takamatsu H, Liu S, Kataoka K, Huh NH, Sakaguchi M. NRF2 regulates PINK1 expression under oxidative stress conditions. PLoS ONE. 2015;10(11):e0142438.

Article  PubMed  PubMed Central  Google Scholar 

Palmeira CM, Teodoro JS, Amorim JA, Steegborn C, Sinclair DA, Rolo AP. Mitohormesis and metabolic health: the interplay between ROS, cAMP and sirtuins. Free Radic Biol Med. 2019;141:483–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei H, Liu L, Chen Q. Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta. 2015;1853(10 Pt B):2784–90.

Article  CAS  PubMed  Google Scholar 

McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 2018;27(2):439–e495.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sabouny R, Fraunberger E, Geoffrion M, Ng AC, Baird SD, Screaton RA, et al. The Keap1-Nrf2 stress response pathway promotes mitochondrial hyperfusion through degradation of the mitochondrial fission protein Drp1. Antioxid Redox Signal. 2017;27(18):1447–59.

Article  CAS  PubMed  Google Scholar 

Irrcher I, Ljubicic V, Hood DA. Interactions between ROS and AMP kinase activity in the regulation of PGC-1alpha transcription in skeletal muscle cells. Am J Physiol Cell Physiol. 2009;296(1):C116–23.

Article  CAS  PubMed  Google Scholar 

Zhang Y, Uguccioni G, Ljubicic V, Irrcher I, Iqbal S, Singh K et al. Multiple signaling pathways regulate contractile activity-mediated PGC-1α gene expression and activity in skeletal muscle cells. Physiol Rep. 2014;2(5).

Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1. J Biol Chem. 2005;280(16):16456–60.

Article  CAS  PubMed  Google Scholar 

Ro SH, Semple I, Ho A, Park HW, Lee JH. Sestrin2, a Regulator of Thermogenesis and mitohormesis in Brown Adipose tissue. Front Endocrinol (Lausanne). 2015;6:114.

Article  PubMed 

留言 (0)

沒有登入
gif