Hexanucleotide repeat expansion in SCA36 reduces the expression of genes involved in ribosome biosynthesis and protein translation

Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018;14:590–605.

Article  PubMed  PubMed Central  Google Scholar 

Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Prim. 2019;5:25.

Article  Google Scholar 

Wallenius J, Kafantari E, Jhaveri E, Englund E, Ehrencrona H, Puschmann A. Exonic trinucleotide repeat expansions in ZFHX3 cause spinocerebellar ataxia type 4: a poly-glycine disease. Am J Hum Genet. 2024;111:82–95.

Article  CAS  PubMed  Google Scholar 

Kobayashi H, Abe K, Matsuura T, Ikeda Y, Hitomi T, Akechi Y, et al. Expansion of intronic GGCCTG hexanucleotide repeat in NOP56 causes SCA36, a type of spinocerebellar ataxia accompanied by motor neuron involvement. Am J Hum Genet. 2011;89:121–30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao S, Zhang D, Liu S, Huang J. The roles of NOP56 in cancer and SCA36. Pathol Oncol Res. 2023;29:1610884.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obayashi M, Stevanin G, Synofzik M, Monin ML, Duyckaerts C, Sato N, et al. Spinocerebellar ataxia type 36 exists in diverse populations and can be caused by a short hexanucleotide GGCCTG repeat expansion. J Neurol Neurosurg Psychiatry. 2015;86:986–95.

Article  PubMed  Google Scholar 

Valera JM, Diaz T, Petty LE, Quintáns B, Yáñez Z, Boerwinkle E, et al. Prevalence of spinocerebellar ataxia 36 in a US population. Neurol Genet. 2017;3:e174.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee YC, Tsai PC, Guo YC, Hsiao CT, Liu GT, Liao YC, et al. Spinocerebellar ataxia type 36 in the Han Chinese. Neurol Genet. 2016;2:e68.

Article  PubMed  PubMed Central  Google Scholar 

Liu W, Ikeda Y, Hishikawa N, Yamashita T, Deguchi K, Abe K. Characteristic RNA foci of the abnormal hexanucleotide GGCCUG repeat expansion in spinocerebellar ataxia type 36 (Asidan). Eur J Neurol. 2014;21:1377–86.

Article  CAS  PubMed  Google Scholar 

Lopez S, He F. Spinocerebellar ataxia 36: from mutations toward therapies. Front Genet. 2022;13:837690.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng S, Zeng J, He M, Zeng X, Zhou Y, Liu Z, et al. Genetic and clinical analysis of spinocerebellar ataxia type 36 in Mainland China. Clin Genet. 2016;90:141–8.

Article  CAS  PubMed  Google Scholar 

García-Murias M, Quintáns B, Arias M, Seixas AI, Cacheiro P, Tarrío R, et al. ‘Costa da Morte’ ataxia is spinocerebellar ataxia 36: clinical and genetic characterization. Brain. 2012;135:1423–35.

Article  PubMed  PubMed Central  Google Scholar 

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

Article  CAS  PubMed  Google Scholar 

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

Article  CAS  PubMed  Google Scholar 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

Article  PubMed  PubMed Central  Google Scholar 

Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–9.

Article  CAS  PubMed  Google Scholar 

Matsuzono K, Imamura K, Murakami N, Tsukita K, Yamamoto T, Izumi Y, et al. Antisense oligonucleotides reduce RNA foci in spinocerebellar ataxia 36 patient iPSCs. Mol Ther Nucleic Acids. 2017;8:211–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gautier T, Bergès T, Tollervey D, Hurt E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol. 1997;17:7088–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hayano T, Yanagida M, Yamauchi Y, Shinkawa T, Isobe T, Takahashi N. Proteomic analysis of human Nop56p-associated pre-ribosomal ribonucleoprotein complexes. Possible link between Nop56p and the nucleolar protein treacle responsible for Treacher Collins syndrome. J Biol Chem. 2003;278:34309–19.

Article  CAS  PubMed  Google Scholar 

Quelle-Regaldie A, Folgueira M, Yáñez J, Sobrido-Cameán D, Alba-González A, Barreiro-Iglesias A, et al. A nop56 zebrafish loss-of-function model exhibits a severe neurodegenerative phenotype. Biomedicines. 2022;10:1814.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikeda Y, Ohta Y, Kobayashi H, Okamoto M, Takamatsu K, Ota T, et al. Clinical features of sca36: a novel spinocerebellar ataxia with motor neuron involvement (Asidan). Neurology. 2012;79:333–41.

Article  CAS  PubMed  Google Scholar 

Sun C, Schuman EM. Logistics of neuronal protein turnover: numbers and mechanisms. Mol Cell Neurosci. 2022;123:103793.

Article  CAS  PubMed  Google Scholar 

Oksuz O, Henninger JE, Warneford-Thomson R, Zheng MM, Erb H, Vancura A, et al. Transcription factors interact with RNA to regulate genes. Mol Cell. 2023;83:2449–63.e13

Article  CAS  PubMed  Google Scholar 

Zhang N, Ashizawa T. RNA toxicity and foci formation in microsatellite expansion diseases. Curr Opin Genet Dev. 2017;44:17–29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions. Neuron. 2019;102:294–320.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Querido E, Gallardo F, Beaudoin M, Ménard C, Chartrand P. Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J Cell Sci. 2011;124:1703–14.

Article  CAS  PubMed  Google Scholar 

Furuta N, Tsukagoshi S, Hirayanagi K, Ikeda Y. Suppression of the yeast elongation factor Spt4 ortholog reduces expanded SCA36 GGCCUG repeat aggregation and cytotoxicity. Brain Res. 2019;1711:29–40.

Article  CAS  PubMed  Google Scholar 

Todd TW, McEachin ZT, Chew J, Burch AR, Jansen-West K, Tong J, et al. Hexanucleotide repeat expansions in c9FTD/ALS and SCA36 confer selective patterns of neurodegeneration in vivo. Cell Rep. 2020;31:107616.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif