GPS2 promotes erythroid differentiation in K562 erythroleukemia cells primarily via NCOR1

Spain BH, Bowdish KS, Pacal AR, Staub SF, Koo D, Chang CY, et al. Two human cDNAs, including a homolog of Arabidopsis FUS6 (COP11), suppress G-protein- and mitogen-activated protein kinase-mediated signal transduction in yeast and mammalian cells. Mol Cell Biol. 1996;16(12):6698–706. https://doi.org/10.1128/mcb.16.12.6698.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell. 2002;9(3):611–23. https://doi.org/10.1016/s1097-2765(02)00468-9.

Article  CAS  PubMed  Google Scholar 

Treuter E, Fan R, Huang Z, Jakobsson T, Venteclef N. Transcriptional repression in macrophages-basic mechanisms and alterations in metabolic inflammatory diseases. FEBS Lett. 2017;591(19):2959–77. https://doi.org/10.1002/1873-3468.12850.

Article  CAS  PubMed  Google Scholar 

Peng YC, Kuo F, Breiding DE, Wang YF, Mansur CP, Androphy EJ. AMF1 (GPS2) modulates p53 transactivation. Mol Cell Biol. 2001;21(17):5913–24. https://doi.org/10.1128/mcb.21.17.5913-5924.2001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Harry GJ, Blackshear PJ, Zeldin DC. G-protein pathway suppressor 2 (GPS2) interacts with the regulatory factor X4 variant 3 (RFX4_v3) and functions as a transcriptional co-activator. J Biol Chem. 2008;283(13):8580–90. https://doi.org/10.1074/jbc.M708209200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jakobsson T, Venteclef N, Toresson G, Damdimopoulos AE, Ehrlund A, Lou X, et al. GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus. Mol Cell. 2009;34(4):510–8. https://doi.org/10.1016/j.molcel.2009.05.006.

Article  CAS  PubMed  Google Scholar 

Cardamone MD, Tanasa B, Chan M, Cederquist CT, Andricovich J, Rosenfeld MG, et al. GPS2/KDM4A pioneering activity regulates promoter-specific recruitment of PPARγ. Cell Rep. 2014;8(1):163–76. https://doi.org/10.1016/j.celrep.2014.05.041.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardamone MD, Krones A, Tanasa B, Taylor H, Ricci L, Ohgi KA, et al. A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2. Mol Cell. 2012;46(1):91–104. https://doi.org/10.1016/j.molcel.2012.01.025.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lentucci C, Belkina AC, Cederquist CT, Chan M, Johnson HE, Prasad S, et al. Inhibition of Ubc13-mediated ubiquitination by GPS2 regulates multiple stages of B cell development. J Biol Chem. 2017;292(7):2754–72. https://doi.org/10.1074/jbc.M116.755132.

Article  CAS  PubMed  Google Scholar 

Cederquist CT, Lentucci C, Martinez-Calejman C, Hayashi V, Orofino J, Guertin D, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Molecular metabolism. 2017;6(1):125–37. https://doi.org/10.1016/j.molmet.2016.10.007.

Article  CAS  PubMed  Google Scholar 

Guo C, Li Y, Gow CH, Wong M, Zha J, Yan C, et al. The optimal corepressor function of nuclear receptor corepressor (NCoR) for peroxisome proliferator-activated receptor γ requires G protein pathway suppressor 2. J Biol Chem. 2015;290(6):3666–79. https://doi.org/10.1074/jbc.M114.598797.

Article  CAS  PubMed  Google Scholar 

Ma WB, Wang XH, Li CY, Tian HH, Zhang J, Bi JJ, et al. GPS2 promotes erythroid differentiation by control of the stability of EKLF protein. Blood. 2020;135(25):2302–15. https://doi.org/10.1182/blood.2019003867.

Article  PubMed  Google Scholar 

Fan R, Toubal A, Goñi S, Drareni K, Huang Z, Alzaid F, et al. Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat Med. 2016;22(7):780–91. https://doi.org/10.1038/nm.4114.

Article  CAS  PubMed  Google Scholar 

English J, Orofino J, Cederquist CT, Paul I, Li H, Auwerx J, et al. GPS2-mediated regulation of the adipocyte secretome modulates adipose tissue remodeling at the onset of diet-induced obesity. Molecular metabolism. 2023;69:101682. https://doi.org/10.1016/j.molmet.2023.101682.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Drareni K, Ballaire R, Alzaid F, Goncalves A, Chollet C, Barilla S, et al. Adipocyte reprogramming by the transcriptional coregulator GPS2 impacts beta cell insulin secretion. Cell Rep. 2020;32(11):108141. https://doi.org/10.1016/j.celrep.2020.108141.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toubal A, Clément K, Fan R, Ancel P, Pelloux V, Rouault C, et al. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J Clin Investig. 2013;123(1):362–79. https://doi.org/10.1172/jci64052.

Article  CAS  PubMed  Google Scholar 

Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45(3):321–34.

Article  CAS  PubMed  Google Scholar 

Tsiftsoglou AS, Vizirianakis IS, Strouboulis J. Erythropoiesis: model systems, molecular regulators, and developmental programs. IUBMB Life. 2009;61(8):800–30. https://doi.org/10.1002/iub.226.

Article  CAS  PubMed  Google Scholar 

Rutherford T, Clegg JB, Higgs DR, Jones RW, Thompson J, Weatherall DJ. Embryonic erythroid differentiation in the human leukemic cell line K562. Proc Natl Acad Sci USA. 1981;78(1):348–52. https://doi.org/10.1073/pnas.78.1.348.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang D, Cho E, Wong J. A critical role for the co-repressor N-CoR in erythroid differentiation and heme synthesis. Cell Res. 2007;17(9):804–14. https://doi.org/10.1038/cr.2007.72.

Article  CAS  PubMed  Google Scholar 

Miller CW, Young K, Dumenil D, Alter BP, Schofield JM, Bank A. Specific globin mRNAs in human erythroleukemia (K562) cells. Blood. 1984;63(1):195–200.

Article  CAS  PubMed  Google Scholar 

Rutherford TR, Clegg JB, Weatherall DJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature. 1979;280(5718):164–5. https://doi.org/10.1038/280164a0.

Article  CAS  PubMed  Google Scholar 

Kingsley PD, Malik J, Emerson RL, Bushnell TP, McGrath KE, Bloedorn LA, et al. “Maturational” globin switching in primary primitive erythroid cells. Blood. 2006;107(4):1665–72. https://doi.org/10.1182/blood-2005-08-3097.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujiwara T, O’Geen H, Keles S, Blahnik K, Linnemann AK, Kang YA, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell. 2009;36(4):667–81. https://doi.org/10.1016/j.molcel.2009.11.001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bieker JJ. Isolation, genomic structure, and expression of human erythroid Krüppel-like factor (EKLF). DNA Cell Biol. 1996;15(5):347–52. https://doi.org/10.1089/dna.1996.15.347.

Article  CAS  PubMed  Google Scholar 

Madan V, Koeffler HP. Differentiation therapy of myeloid leukemia: four decades of development. Haematologica. 2021;106(1):26–38. https://doi.org/10.3324/haematol.2020.262121.

Article  CAS  PubMed  Google Scholar 

Luisi-DeLuca C, Mitchell T, Spriggs D, Kufe DW. Induction of terminal differentiation in human K562 erythroleukemia cells by arabinofuranosylcytosine. J Clin Investig. 1984;74(3):821–7. https://doi.org/10.1172/jci111498.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Long MD, van den Berg PR, Russell JL, Singh PK, Battaglia S, Campbell MJ. Integrative genomic analysis in K562 chronic myelogenous leukemia cells reveals that proximal NCOR1 binding positively regulates genes that govern erythroid differentiation and Imatinib sensitivity. Nucleic Acids Res. 2015;43(15):7330–48. https://doi.org/10.1093/nar/gkv642.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, et al. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat Commun. 2015;6:8893. https://doi.org/10.1038/ncomms9893.

Article  CAS  PubMed  Google Scholar 

Jepsen K, Hermanson O, Onami TM, Gleiberman AS, Lunyak V, McEvilly RJ, et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell. 2000;102(6):753–63. https://doi.org/10.1016/s0092-8674(00)00064-7.

Article  CAS  PubMed  Google Scholar 

Wan X, Liu L, Zhou P, Hui X, He Q, Yu F, et al. The nuclear receptor corepressor NCoR1 regulates hematopoiesis and leukemogenesis in vivo. Blood Adv. 2019;3(4):644–57. https://doi.org/10.1182/bloodadvances.2018022756.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif