Co-habiting ants and silverfish display a converging feeding ecology

Paracer S, Ahmadjian V. Symbiosis: an introduction to biological associations. New York: Oxford University Press; 2000.

Book  Google Scholar 

Bronstein JL. The costs of mutualism. Am Zool. 2001;41(4):825–39. https://doi.org/10.2307/3884527.

Article  Google Scholar 

Futuyma DJ, Moreno G. The evolution of ecological specialization. Annu Rev Ecol Syst. 1988;19(20):207–33. https://doi.org/10.1146/annurev.es.19.110188.001231.

Article  Google Scholar 

Luong LT, Mathot KJ. Facultative parasites as evolutionary stepping-stones towards parasitic lifestyles. Biol Lett. 2019;15(4):20190058. https://doi.org/10.1098/rsbl.2019.0058.

Article  PubMed  PubMed Central  Google Scholar 

Poulin R. Evolutionary ecology of parasites: (Second edition). Evolutionary Ecology of Parasites: (Second Edition). Princeton University Press. 2011. https://doi.org/10.1086/586926

Stadler B, Dixon AFG. Ecology and evolution of aphid-ant interactions. Annu Rev Ecol Evol Syst. 2005;36(1):345–72. https://doi.org/10.1146/annurev.ecolsys.36.091704.175531.

Article  Google Scholar 

Chomicki G, Kadereit G, Renner SS, Kiers ET. Tradeoffs in the evolution of plant farming by ants. Proc Natl Acad Sci. 2020;117(5):201919611. https://doi.org/10.1146/annurev.ecolsys.36.091704.175531.

Article  Google Scholar 

Johnson SD, Steiner KE. Generalization versus specialization in plant pollination systems. Trends Ecol Evol. 2000;15(4):140–3. https://doi.org/10.1016/S0169-5347(99)01811-X.

Article  CAS  PubMed  Google Scholar 

Nagler C, Haug JT. Functional morphology of parasitic isopods: understanding morphological adaptations of attachment and feeding structures in Nerocila as a pre-requisite for reconstructing the evolution of Cymothoidae. PeerJ. 2016;4:e2188. https://doi.org/10.7717/peerj.2188.

Article  PubMed  PubMed Central  Google Scholar 

Kaufman MG, Walker ED, Odelson DA, Klug MJ. Microbial community ecology & insect nutrition. Am Entomol. 2000;46(3):173–85. https://doi.org/10.1093/ae/46.3.173.

Article  Google Scholar 

Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735. https://doi.org/10.1111/1574-6976.12025.

Article  CAS  PubMed  Google Scholar 

Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23(6):1473–96. https://doi.org/10.1111/mec.12421.

Article  PubMed  Google Scholar 

Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9(12):e1001221. https://doi.org/10.1371/journal.pbio.1001221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patel DD, Patel AK, Parmar NR, Shah TM, Patel JB, Pandya PR, et al. Microbial and carbohydrate active enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. Gene. 2014;545(1):88–94. https://doi.org/10.1016/j.gene.2014.05.003.

Article  CAS  PubMed  Google Scholar 

Fukatsu T, Hosokawa T. Capsule-transmitted gut symbiotic bacterium of the japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol. 2002;68(1):389–96. https://doi.org/10.1128/AEM.68.1.389-396.2002.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng XY, et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol. 2014;24(20):2465–70. https://doi.org/10.1016/j.cub.2014.08.065.

Article  CAS  PubMed  Google Scholar 

Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M, Weiss B, et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell. 2017;171(7):1520–31. https://doi.org/10.1016/j.cell.2017.10.029.

Article  CAS  PubMed  Google Scholar 

Kikuchi Y, Hosokawa T, Fukatsu T. Insect-Microbe Mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73(13):4308–16. https://doi.org/10.1128/AEM.00067-07.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kikuchi Y, Hosokawa T, Fukatsu T. An ancient but promiscuous host–symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 2011;5(3):446–60. https://doi.org/10.1038/ismej.2010.150.

Article  PubMed  Google Scholar 

Onchuru TO, Javier Martinez A, Ingham CS, Kaltenpoth M. Transmission of mutualistic bacteria in social and gregarious insects. Current Opinion in Insect Science. 2018;28:50–8. https://doi.org/10.1016/j.cois.2018.05.002.

Article  PubMed  Google Scholar 

Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10(8):1866–76. https://doi.org/10.1038/ismej.2015.264.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koch H, Schmid- P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108(48):19288–92. https://doi.org/10.1073/pnas.1110474108.

Article  PubMed  PubMed Central  Google Scholar 

Powell JE, Martinson VG, Urban-Mead K, Moran NA. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol. 2014;80(23):7378–87. https://doi.org/10.1128/AEM.01861-14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nalepa CA. Origin of termite eusociality: trophallaxis integrates the social, nutritional, and microbial environments: Origin of termite eusociality. Ecol Entomol. 2015;40(4):323–35. https://doi.org/10.1111/een.12197.

Article  Google Scholar 

Perry EK, Siozios S, Hurst GDD, Parker J. Structure of an ant-myrmecophile-microbe community. Pre-print. https://doi.org/10.1101/2021.10.04.462948

Hölldobler B, Kwapich CL. The guests of ants - how myrmecophiles interact with their hosts. Harvard University Press; 2022.

Parmentier T, De Laender F, Bonte D. The topology and drivers of ant–symbiont networks across Europe. Biol Rev. 2020;95(6):1664–88. https://doi.org/10.1111/brv.12634.

Article  PubMed  Google Scholar 

Komatsu T, Maruyama M, Itino T. Behavioral differences between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insectes Soc. 2009;56(4):389–96. https://doi.org/10.1007/s00040-009-0036-y.

Article  Google Scholar 

Komatsu T, Maruyama M, Hattori M, Itino T. Morphological characteristics reflect food sources and degree of host ant specificity in four Myrmecophilus crickets. Insectes Soc. 2017;65:47–57. https://doi.org/10.1007/s00040-017-0586-3.

Article  Google Scholar 

Parker J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecological News. 2016;65–108.

von Beeren C, Brückner A, Maruyama M, Burke G, Wieschollek J, Kronauer DJC. Chemical and behavioral integration of army ant-associated rove beetles - a comparison between specialists and generalists. Front Zool. 2018;15(1):1–15. https://doi.org/10.1186/s12983-018-0249-x.

Article  CAS  Google Scholar 

Parmentier T, De Laender F, Wenseleers T, Bonte D. Prudent behavior rather than chemical deception enables a parasite to exploit its ant host. Behav Ecol. 2018;29:1225–33. https://doi.org/10.1093/beheco/ary134.

Article  Google Scholar 

Valdivia C, Newton JA, Donnell SO, Beeren CV, Daniel J, Kronauer C, et al. Microbial symbionts are shared between ants and their associated beetles. Environ Microbiol. 2022:1–19. https://doi.org/10.1111/1462-2920.16544.

Molero-Baltanás R, Bach De Roca C, Tinaut A, Pérez JD, Gaju-Ricart M. Symbiotic relationships between silverfish (Zygentoma: Lepismatidae, Nicoletiidae) and ants (Hymenoptera: Formicidae) in the Western Palaearctic. A quantitative analysis of data from Spain. Myrmecol News. 2017;24(1):107–22.

Google Scholar 

Parmentier T, Gaju-Ricart M, Wenseleers T, Molero-Baltanás R. Chemical and behavioural strategies along the spectrum of host specificity in ant-associated silverfish. BMC Zool. 2022;7(1):1–21. https://doi.org/10.1186/s40850-022-00118-9.

Article  Google Scholar 

Layman CA, Arrington DA, Montaña CG, Post DM. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology. 2007;88(1):42–8. https://doi.org/10.1890/0012-9658.

Article  PubMed  Google Scholar 

Janet C. Etudes sur les fourmis, les guêpes et les abeilles. Note 14: Rapports des animaux myrmécophiles avec les fourmis. Ducourtieux, Limoges; 1897.

Pothula R, Shirley D, Perera OP, Klingeman WE, Oppert C, Abdelgaffar HMY, et al. The digestive system in Zygentoma as an insect model for high cellulase activity. PLoS ONE. 2019;14(2):e0212505. https://doi.org/10.1371/journal.pone.0212505.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wygodzinsky P. On a surviving representative of the Lepidotrichidae (Thysanura). Ann Entomol Soc Am. 1961;54(5):621–7.

Article  Google Scholar 

Barnhart CS. The Internal Anatomy of the Silverfish Ctenolepisma campbelli and Lepisma saccharinum (Thysanura: Lepismatidae)1. Ann Entomol Soc Am. 1961;54(2):177–96. https://doi.org/10.1093/aesa/54.2.177.

Article  Google Scholar 

Steiner FM, Csősz S, Markó B, Gamisch A, Rinnhofer L, Folterbauer C, et al. Turning one into five: Integrative taxonomy uncovers complex evolution of cryptic species in the harvester ant Messor “structor”. Mol Phylogenet Evol. 2018;127:387–404. https://doi.org/10.1016/j.ympev.2018.04.005.

Article  PubMed  Google Scholar 

Perlmutter JI, Bordenstein SR. Microorganisms in the reproductive tissues of arthropods. Nat Rev Microbiol. 2020;18(2):97–111. https://doi.org/10.1038/s41579-019-0309-z.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif