Preparation of Bioscaffold Supported by Chitosan and Nanocurcumin to Promote Tissue Engineering

Ulubayram K, Nur Cakar A, Korkusuz P, Ertan C, Hasirci N. EGF containing gelatin-based wound dressings. Biomater. 2001;22:1345–56.

Article  CAS  Google Scholar 

Guerrero-Gironés J, Alcaina-Lorente A, Ortiz-Ruiz C, Ortiz-Ruiz E, Pecci-Lloret MP, Ortiz-Ruiz AJ, Rodríguez-Lozano FJ, Pecci-Lloret MR. Biocompatibility of a HA/β-TCP/C scaffold as a pulp-capping agent for vital pulp treatment: an in vivo study in rat molars. Int J Environ Res Public Health. 2021;18:3936.

Article  PubMed  PubMed Central  Google Scholar 

Pecci-Lloret MP, Nandin-Muttoni G, Pecci-Lloret MR, Guerrero-Gironés J, Rodríguez-Lozano FJ. Scaffolds for pulp revitalisation: a systematic review of randomized clinical trials. Ann Anat. 2022;243:151936.

Article  PubMed  Google Scholar 

Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S, Okamoto Y. Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater. 2015;6:104–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paul W, Sharma CP. Chitosan and alginate wound dressings: a short review trends. Biomater Artif Organs. 2004;18:18–23.

Google Scholar 

Ojeda-Hernández DD, Hernández-Sapiéns MA, Reza-Zaldívar EE, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Mateos-Díaz JC, Gómez-Pinedo U, Sancho-Bielsa F. Exosomes and biomaterials: in search of a new therapeutic strategy for multiple sclerosis. Life (Basel). 2022;12:1417.

PubMed  Google Scholar 

Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polym. 2018;10:462.

Article  Google Scholar 

Wang Y, Tan H, Hui X. Biomaterial scaffolds in regenerative therapy of the central nervous system. Biomed Res Int. 2018;2018:7848901.

PubMed  PubMed Central  Google Scholar 

Mimica B, Bučević Popović V, Banjari I, Jeličić Kadić A, Puljak L. Methods used for enhancing the bioavailability of oral curcumin in randomized controlled trials: a meta-research study. Pharmacey (Basel). 2022;15:939.

Article  CAS  Google Scholar 

Guarnieri A, Triunfo M, Scieuzo C, Ianniciello D, Tafi E, Hahn T, Zibek S, Salvia R, De Bonis A, Falabella P. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci Rep. 2022;12:8084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mueller AL, Brockmueller A, Kunnumakkara AB, Shakibaei M. Modulation of inflammation by plant-derived nutraceuticals in tendinitis. Nutrients. 2022;14:2030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hemalatha T, Uma M, Krithika K, Senthil R. Efficacy of chitosan films with basil essential oil: perspectives in food packaging. J Food Meas Charac. 2017;11:2160–70.

Article  Google Scholar 

Cui Y, Liu Y, Jing X, Zhang P, Chen X. The nanocomposite scaffold of poly(lactide-co- glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Acta Biomater. 2009;5:2680–92.

Article  CAS  PubMed  Google Scholar 

Jitendra P, Rajam AM, Kalaivani T, Mandal AB, Rose C. Collagen based silver nanoparticles for biological applications. Appl Mater Interfaces. 2013;5:7291.

Google Scholar 

Pranoto Y, Rakshit SK, Salokhe VM. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT—Food Sci Technol. 2005;38:859–65.

Article  CAS  Google Scholar 

Senthil R, Sumathi S, Sivakumar PM, Lakshmi T, Ahmed A. Curcumin nanoparticles impregnated collagen/demineralized bone matrix/olive leaves extract biocomposites as a potential bone implant: preparation, characterization, and biocompatibility. MRS Commun. 2023;13:136–42.

Article  CAS  Google Scholar 

Kumar V, Kumar R, Jain VK, Nagpal S. Preparation and characterization of nanocurcumin based hybrid virosomes as a drug delivery vehicle with enhanced anticancerous activity and reduced toxicity. Sci Rep. 2021;11:368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirai A, Odani H, Nakajima A. Determination of degree of deacetylation of chitosan by 1H NMR spectroscopy. Polym Bull. 1991;26:87–94.

Article  CAS  Google Scholar 

Domard A, Gey C, Rinaudo MC. Terrassin spectroscopy of chitosan and N-trimethyl chloride derivatives. Int J Biol Macromol. 1987;9:23.

Article  Google Scholar 

Sharma A, Hawthorne S, Jha SK, Jha NK, Kumar D, Girgis S, Goswami VK, Gupta G, Singh S, Dureja H, Chellappan DK, Dua K. Effects of curcumin-loaded poly(lactic-co-glycolic acid) nanoparticles in MDA-MB231 human breast cancer cells. Nanomed (Lond). 2021;16:1763–73.

Article  CAS  Google Scholar 

Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceut. 2018;10:57.

Article  Google Scholar 

Yallapu MM, Nagesh PK, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015;17:1341–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang YH, Liu CC, Cherng JH, Fan GY, Wang YW, Chang SJ, Hong ZJ, Lin YC, Hsu SD. Evaluation of chitosan-based dressings in a swine model of artery-injury-related shock. Sci Rep. 2019;9:14608.

Article  PubMed  PubMed Central  Google Scholar 

Hashemi Doulabi A, Mirzadeh H, Imani M, Bagheri-Khoulenjani S. Chitosan/polyethylene glycol fumarate blend films for wound dressing application: in vitro biocompatibility and biodegradability assays. Prog Biomater. 2018;7:143–50.

Article  PubMed  PubMed Central  Google Scholar 

Cychosz KA, Guillet-Nicolas R, García-Martínez J, Thommes M. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chem Soc Rev. 2017;46:389–414.

Article  CAS  PubMed  Google Scholar 

Sander EA, Lynch KA, Boyce ST. Development of the mechanical properties of engineered skin substitutes after grafting to full-thickness wounds. J Biomech Eng. 2014;136:051008.

Article  PubMed  Google Scholar 

Hariu M, Watanabe Y, Oikawa N, Seki M. Usefulness of matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify pathogens, including polymicrobial samples, directly from blood culture broths. Infect Drug Resist. 2017;10:115–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGO. Antimicrobial activity of curcumin in nanoformulations: a comprehensive review. Int J Mol Sci. 2021;22:7130.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonzálvez-García M, Martinez CM, Villanueva V, García-Hernández A, Blanquer M, Meseguer-Olmo L, Oñate Sánchez RE, Moraleda JM, Rodríguez-Lozano FJ. Preclinical studies of the biosafety and efficacy of human bone marrow mesenchymal stem cells pre-seeded into β-TCP scaffolds after transplantation. Mater (Basel). 2018;11:1349.

Article  Google Scholar 

Hussein KH, Park KM, Kang KS, Woo HM. Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application. Mater Sci Eng C Mater Biol Appl. 2016;67:766–78.

Article  CAS  PubMed  Google Scholar 

Batikan Kavukcu S, Sinam C, Hayati T, Senthil R. Curcumin nanoparticles supported gelatin-collagen scaffold: preparation, characterization, and in-vitro study. Toxicol Rep. 2021;8:1475–9.

Article  Google Scholar 

留言 (0)

沒有登入
gif