Connexin channels and hemichannels are modulated differently by charge reversal at residues forming the intracellular pocket

Beyer EC, Berthoud VM. Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim Biophys Acta Biomembr. 2018;1860:5–8.

Article  CAS  PubMed  Google Scholar 

Laird DW, Lampe PD. Cellular mechanisms of connexin-based inherited diseases. Trends Cell Biol. 2022;32:58–69.

Article  CAS  PubMed  Google Scholar 

Dobrowolski R, Willecke K. Connexin-caused genetic diseases and corresponding mouse models. Antioxid Redox Signal. 2009;11:283–95.

Article  CAS  PubMed  Google Scholar 

Maeda S, Nakagawa S, Suga M, Yamashita E, Oshima A, Fujiyoshi Y, Tsukihara T. Structure of the connexin 26 gap junction channel at 3.5 Å resolution. Nature. 2009;458:597–602.

Article  CAS  PubMed  Google Scholar 

Brotherton DH, Savva CG, Ragan TJ, Dale N, Cameron AD. Conformational changes and CO2-induced channel gating in connexin26. Structure. 2022;30:697–706.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myers JB, Haddad BG, O’Neill SE, Chorev DS, Yoshioka CC, Robinson CV, et al. Structure of native lens connexin 46/50 intercellular channels by cryo-EM. Nature. 2018;564:372–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flores JA, Haddad BG, Dolan KA, Myers JB, Yoshioka CC, Copperman J, et al. Connexin-46/50 in a dynamic lipid environment resolved by CryoEM at 1.9 Å. Nat Commun. 2020;11:4331.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee HJ, Jeong H, Hyun J, Ryu B, Park K, Lim HH, et al. Cryo-EM structure of human Cx31.3/GJC3 connexin hemichannel. Sci Adv. 2020;6: eaba4996.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Altevogt BM, Kleopa KA, Postma FR, Scherer SS, Paul DL. Connexin29 is uniquely distributed within myelinating glial cells of the central and peripheral nervous systems. J Neurosci. 2002;22:6458–70.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sargiannidou I, Ahn M, Enriquez AD, Peinado A, Reynolds R, Abrams C, et al. Human oligodendrocytes express Cx31.3: function and interactions with Cx32 mutants. Neurobiol Dis. 2008;30:221–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Araya-Secchi R, Perez-Acle T, Kang S-G, Huynh T, Bernardin A, Escalona Y, et al. Characterization of a novel water pocket inside the human Cx26 hemichannel structure. Biophys J. 2014;107:599–612.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brennan MJ, Karcz J, Vaughn NR, Woolwine-Cunningham Y, DePriest AD, Escalona Y, et al. Tryptophan scanning reveals dense packing of connexin transmembrane domains in gap junction channels composed of connexin32. J Biol Chem. 2015;290:17074–84.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García IE, Villanelo F, Contreras GF, Pupo A, Pinto BI, Contreras JE, et al. The syndromic deafness mutation G12R impairs fast and slow gating in Cx26 hemichannels. J Gen Physiol. 2018;150:697–711.

Article  PubMed  PubMed Central  Google Scholar 

Nielsen BS, Zonta F, Farkas T, Litman T, Nielsen MS, MacAulay N. Structural determinants underlying permeant discrimination of the Cx43 hemichannel. J Biol Chem. 2019;294:16789–803.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schadzek P, Stahl Y, Preller M, Ngezahayo A. Analysis of the dominant mutation N188T of human connexin46 (hCx46) using concatenation and molecular dynamics simulation. FEBS Open Bio. 2019;9:840–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Héja L, Simon Á, Szabó Z, Kardos J. Connexons coupling to gap junction channel: potential role for extracellular protein stabilization centers. Biomolecules. 2021;12:49

Article  PubMed  PubMed Central  Google Scholar 

Tong JJ, Khan U, Haddad BG, Minogue PJ, Beyer EC, Berthoud VM, et al. Molecular mechanisms underlying enhanced hemichannel function of a cataract-associated Cx50 mutant. Biophys J. 2021;120:5644–56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yue B, Haddad BG, Khan U, Chen H, Atalla M, Zhang Z, et al. Connexin 46 and connexin 50 gap junction channel properties are shaped by structural and dynamic features of their N-terminal domains. J Physiol. 2021;599:3313–35.

Article  CAS  PubMed  Google Scholar 

Oliveira MC, Cordeiro RM, Bogaerts A. Effect of lipid oxidation on the channel properties of Cx26 hemichannels: a molecular dynamics study. Arch Biochem Biophys. 2023;746: 109741.

Article  CAS  PubMed  Google Scholar 

Tsai CY, Lu YC, Chan YH, Radhakrishnan N, Chang YY, Lin SW, et al. Simulation-predicted and -explained inheritance model of pathogenicity confirmed by transgenic mice models. Comput Struct Biotechnol J. 2023;21:5698–711.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García IE, Prado P, Pupo A, Jara O, Rojas-Gómez D, Mujica P, et al. Connexinopathies: a structural and functional glimpse. BMC Cell Biol. 2016;17(Suppl 1):S17.

Article  Google Scholar 

Beahm DL, Hall JE. Hemichannel and junctional properties of connexin 50. Biophys J. 2002;82:2016–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Srinivas M, Kronengold J, Bukauskas FF, Bargiello TA, Verselis VK. Correlative studies of gating in Cx46 and Cx50 hemichannels and gap junction channels. Biophys J. 2005;88:1725–39.

Article  CAS  PubMed  Google Scholar 

Contreras JE, Sáez JC, Bukauskas FF, Bennett MVL. Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA. 2003;100:11388–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jara O, Acuña R, García IE, Maripillán J, Figueroa V, Sáez JC, et al. Critical role of the first transmembrane domain of Cx26 in regulating oligomerization and function. Mol Biol Cell. 2012;23:3299–311.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García IE, Maripillán J, Jara O, Ceriani R, Palacios-Muňoz A, Ramachandran J, et al. Keratitis-ichthyosis-deafness syndrome-associated Cx26 mutants produce nonfunctional gap junctions but hyperactive hemichannels when co-expressed with wild type Cx43. J Invest Dermatol. 2015;135:1338–47.

Article  PubMed  PubMed Central  Google Scholar 

Beyer EC, Berthoud VM. The family of connexin genes. In: Harris AL, Locke D, editors. Connexins. A guide. New York: Humana Press; 2009. p. 3–26. https://doi.org/10.1007/978-1-59745-489-6_1.

Chapter  Google Scholar 

Contreras JE, Sánchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, et al. Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci USA. 2002;99:495–500.

Article  CAS  PubMed  Google Scholar 

Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, et al. ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA. 2008;105:18770–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sánchez HA, Orellana JA, Verselis VK, Sáez JC. Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol. 2009;297:C665–78.

Article  PubMed  PubMed Central  Google Scholar 

Orellana JA, Sáez PJ, Cortés-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, et al. Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia. 2012;60:53–68.

Article  PubMed  Google Scholar 

Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci. 2008;28:4702–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, Zou T, Liu Y, Qi Y. The gating effect of calmodulin and calcium on the connexin50 hemichannel. Biol Chem. 2006;387:595–601.

Article  CAS  PubMed  Google Scholar 

Laird DW, Jordan K, Thomas T, Qin H, Fistouris P, Shao Q. Comparative analysis and application of fluorescent protein-tagged connexins. Microsc Res Tech. 2001;52:263–72.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif