LGR5 Modulates Differentiated Phenotypes of Chondrocytes Through PI3K/AKT Signaling Pathway

Nasiri N, Hosseini S, Alini M, Khademhosseini A, Baghaban EM. Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug Discov Today. 2019;24:2212–24.

Article  CAS  PubMed  Google Scholar 

Ng A, Bernhard K. Osteochondral autograft and allograft transplantation in the talus. Clin Podiatr Med Surg. 2017;34:461–9.

Article  PubMed  Google Scholar 

Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

Article  CAS  PubMed  Google Scholar 

Baei P, Daemi H, Aramesh F, Baharvand H, Eslaminejad MB. Advances in mechanically robust and biomimetic polysaccharide-based constructs for cartilage tissue engineering. Carbohydr Polym. 2023;308:120650.

Article  CAS  PubMed  Google Scholar 

Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015;11:21–34.

Article  CAS  PubMed  Google Scholar 

Ghosh S, Ak S, Seelbinder B, Barthold Je, Martin B, Kaonis S, et al. Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion. Biophys J. 2022;121:131–41.

Article  CAS  PubMed  Google Scholar 

Ma B, Leijten JCH, Wu L, Kip M, Van Blitterswijk CA, Post JN, et al. Gene expression profiling of dedifferentiated human articular chondrocytes in monolayer culture. Osteoarthr Cartil. 2013;21:599–603.

Article  CAS  Google Scholar 

Hou M, Bai B, Tian B, Ci Z, Liu Y, Zhou G, et al. Cartilage regeneration characteristics of human and goat auricular chondrocytes. Front Bioeng Biotechnol. 2021;9:766363.

Article  PubMed  PubMed Central  Google Scholar 

Sl Ding X, Liu XZ, Kt Wang W, Xiong ZG, et al. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater. 2022;17:81–108.

Google Scholar 

Zelinka A, Roelofs Aj, Kandel Ra, De Bari C. Cellular therapy and tissue engineering for cartilage repair. Osteoarthr Cartil. 2022;30:1547–60.

Article  CAS  Google Scholar 

Rakic R, Bourdon B, Hervieu M, Branly T, Legendre F, Saulnier N, et al. RNA Interference and BMP-2 stimulation allows equine chondrocytes redifferentiation in 3D-Hypoxia cell culture model: application for matrix-induced autologous chondrocyte implantation. Int J Mol Sci. 2017;18:1842.

Article  PubMed  PubMed Central  Google Scholar 

Sewing J, Klinger M, Notbohm H. Jellyfish collagen matrices conserve the chondrogenic phenotype in two- and three-dimensional collagen matrices. J Tissue Eng Regen Med. 2017;11:916–25.

Article  CAS  PubMed  Google Scholar 

Takahashi T, Ogasawara T, Asawa Y, Mori Y, Uchinuma E, Takato T, et al. Three-dimensional microenvironments retain chondrocyte phenotypes during proliferation culture. J Tissue Eng. 2007;13:1583–92.

Article  CAS  Google Scholar 

Pahoff S, Meinert C, Bas O, Nguyen L, Klein Tj, Hutmacher Dw. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. J Mater Chem B. 2019;7:1761–72.

Article  CAS  PubMed  Google Scholar 

Huang X, Zhong L, Post Jn, Karperien M. Co-treatment of TGF-β3 and BMP7 is superior in stimulating chondrocyte redifferentiation in both hypoxia and normoxia compared to single treatments. Sci Rep. 2018;8:10251.

Article  PubMed  PubMed Central  Google Scholar 

He AJ, Ye AQ, Song N, Liu NH, Zhou GD, Liu YQ, et al. Phenotypic redifferentiation of dedifferentiated microtia chondrocytes through a three-dimensional chondrogenic culture system. Am J Transl Res. 2020;12:2903–15.

PubMed  PubMed Central  Google Scholar 

Duan L, Liang YJ, Ma B, Wang DM, Liu W, Huang JH, et al. DNA methylation profiling in chondrocyte dedifferentiation in vitro. J Cell Physiol. 2017;232:1708–16.

Article  CAS  PubMed  Google Scholar 

Wuest SL, Calio M, Wernas T, Tanner S, Giger-Lange C, Wyss F, et al. Influence of mechanical unloading on articular chondrocyte dedifferentiation. Int J Mol Sci. 2018;19:1289.

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Xu JY, Lv S, Zhao Y, Sun DJ, Zheng YY, et al. Overexpression of long non-coding RNA AP001505.9 inhibits human hyaline chondrocyte dedifferentiation. Aging-Us. 2021;13:11433–54.

Article  CAS  Google Scholar 

Chen YS, Yu YK, Wen Y, Chen J, Lin JX, Sheng ZX, et al. A high-resolution route map reveals distinct stages of chondrocyte dedifferentiation for cartilage regeneration. Bone Res. 2022;10:38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng C, Chan WCW, Lam Y, Wang X, Chen P, Niu B, et al. Lgr5 and Col22a1 mark progenitor cells in the lineage toward juvenile articular chondrocytes. Stem Cell Rep. 2019;13:713–29.

Article  CAS  Google Scholar 

Hsu SY, Liang SG, Hsueh AJ. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol Endocrinol. 1998;12:1830–45.

Article  CAS  PubMed  Google Scholar 

Barker N, Van Es JH, Kuipers J, Kujala P, Van Den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

Article  CAS  PubMed  Google Scholar 

Wang X, Chen H, Tian R, Zhang Y, Drutskaya Ms, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5 + stem cell activation and hair follicle regeneration through TNF. Nature Commun. 2017;8:14091.

Article  CAS  Google Scholar 

Sato T, Van Es JH, Snippert HJ, Stange DE, Vries RG, Van Den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–8.

Article  CAS  PubMed  Google Scholar 

Junttila MR, Mao W, Wang X, Wang BE, Pham T, Flygare J, et al. Targeting LGR5+cells with an antibody-drug conjugate for the treatment of colon cancer. Sci Transl Med. 2015;7:314ra186.

Article  PubMed  Google Scholar 

Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:e29.

Google Scholar 

Zhang L, He A, Yin Z, Yu Z, Luo X, Liu W, et al. Regeneration of human-ear-shaped cartilage by co-culturing human microtia chondrocytes with BMSCs. Biomaterials. 2014;35:4878–87.

Article  CAS  PubMed  Google Scholar 

He A, Xia H, Xiao K, Wang T, Liu Y, Xue J, et al. Cell yield, chondrogenic potential, and regenerated cartilage type of chondrocytes derived from ear, nasoseptal, and costal cartilage. J Tissue Eng Regen Med. 2018;12:1123–32.

Article  CAS  PubMed  Google Scholar 

Lin W, Wang M, Xu L, Tortorella M, Li G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol. 2023;11:1125405.

Article  PubMed  PubMed Central  Google Scholar 

Ma J, Zhang Y, Yan Z, Wu P, Li C, Yang R, et al. Single-cell transcriptomics reveals pathogenic dysregulation of previously unrecognised chondral stem/progenitor cells in children with microtia. Clin Transl Med. 2022;12:e702.

Article  PubMed  PubMed Central  Google Scholar 

Otto IA, Levato R, Webb WR, Khan IM, Breugem CC, Malda J. Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture. Eur Cell Mater. 2018;35:132–50.

Article  CAS  PubMed  Google Scholar 

Otto IA, Bernal PN, Rikkers M, Van Rijen MHP, Mensinga A, Kon M, et al. Human adult, pediatric and microtia auricular cartilage harbor fibronectin-adhering progenitor cells with regenerative ear reconstruction potential. Iscience. 2022;25:104979.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao M, Xiao H, Liang Y, Cai H, Guo X, Lin J, et al. The hyperproliferation mechanism of cholesteatoma based on proteomics: SNCA promotes autophagy-mediated cell proliferation through the PI3K/AKT/CyclinD1 signaling pathway. Mol Cell Proteom MCP. 2023;22:100628.

Article  CAS  PubMed  Google Scholar 

He S, Chen M, Lin X, Lv Z, Liang R, Huang L. Triptolide inhibits PDGF-induced proliferation of ASMCs through G0/G1 cell cycle arrest and suppression of the AKT/NF-κB/cyclinD1 signaling pathway. Eur J Pharmacol. 2020;867:172811.

Article  CAS  PubMed  Google Scholar 

Xi J, Sun Y, Zhang M, Fa Z, Wan Y, Min Z, et al. GLS1 promotes proliferation in hepatocellular carcinoma cells via AKT/GSK3β/CyclinD1 pathway. Exp Cell Res. 2019;381:1–9.

Article  CAS  PubMed  Google Scholar 

Zhao X, Ma B, Zhu H, Bai J, Liu L, Li X, et al. PI3K/Akt and Wnt/β-catenin signaling cross-regulate NF-κB signaling in TNF-α-induced human Lgr5 + intestinal stem cells. Anticancer Res. 2022;42:3325–40.

Article  CAS  PubMed  Google Scholar 

Zhu Z, Cao C, Zhang D, Zhang Z, Liu L, Wu D, et al. UBE2T-mediated Akt ubiquitination and Akt/β-catenin activation promotes hepatocellular carcinoma development by increasing pyrimidine metabolism. Cell Death Dis. 2022;13:154.

Article 

留言 (0)

沒有登入
gif