Heparanase accelerates the angiogenesis and inhibits the ferroptosis of p53-mutant non-small cell cancers in VEGF-dependent manner

Baraz L, Haupt Y, Elkin M, Peretz T, Vlodavsky I (2006) Tumor suppressor p53 regulates heparanase gene expression. Oncogene 25:3939–3947. https://doi.org/10.1038/sj.onc.1209425

Article  CAS  PubMed  Google Scholar 

Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713. https://doi.org/10.1038/nrc2693

Article  CAS  PubMed  Google Scholar 

Chen Z, Zhu L, Li X, Tian H, Fang Y, Liu H, Li S, Li L, Yue W, Li W (2013) Down-regulation of heparanase leads to the inhibition of invasion and proliferation of A549 cells in vitro and in vivo. Acta Biochim Biophys Sin 45:188–193. https://doi.org/10.1093/abbs/gms109

Article  CAS  PubMed  Google Scholar 

Chen X, Kang R, Kroemer G, Tang D (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18:280–296. https://doi.org/10.1038/s41571-020-00462-0

Article  CAS  PubMed  Google Scholar 

Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, Best LA, Vlodavsky I, Ilan N (2008) Heparanase is overexpressed in lung cancer and correlates inversely with patient survival. Cancer 113:1004–1011. https://doi.org/10.1002/cncr.23680

Article  PubMed  Google Scholar 

Cohen-Kaplan V, Naroditsky I, Zetser A, Ilan N, Vlodavsky I, Doweck I (2008) Heparanase induces VEGF C and facilitates tumor lymphangiogenesis. Int J Cancer 123:2566–2573. https://doi.org/10.1002/ijc.23898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Custodio AB, González-Larriba JL, Bobokova J, Calles A, Alvarez R, Cuadrado E, Manzano A, Díaz-Rubio E (2009) Prognostic and predictive markers of benefit from adjuvant chemotherapy in early-stage non-small cell lung cancer. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer 4:891–910. https://doi.org/10.1097/JTO.0b013e3181a4b8fb

Article  Google Scholar 

Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040. https://doi.org/10.1038/sj.onc.1207116

Article  CAS  PubMed  Google Scholar 

Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62. https://doi.org/10.1038/nature14344

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim YW, Byzova TV (2014) Oxidative stress in angiogenesis and vascular disease. Blood 123:625–631. https://doi.org/10.1182/blood-2013-09-512749

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim MG, Jo SD, Yhee JY, Lee BS, Lee SJ, Park SG, Kang SW, Kim SH, Jeong JH (2017) Synergistic anti-tumor effects of bevacizumab and tumor targeted polymerized VEGF siRNA nanoparticles. Biochem Biophys Res Commun 489:35–41. https://doi.org/10.1016/j.bbrc.2017.05.103

Article  CAS  PubMed  Google Scholar 

Kuganesan N, Dlamini S, Tillekeratne LMV, Taylor WR (2021) Tumor suppressor p53 promotes ferroptosis in oxidative stress conditions independent of modulation of ferroptosis by p21, CDKs, RB, and E2F. J Biol Chem 297:101365. https://doi.org/10.1016/j.jbc.2021.101365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lei B, Qi W, Zhao Y, Li Y, Liu S, Xu X, Zhi C, Wan L, Shen H (2015) PBK/TOPK expression correlates with mutant p53 and affects patients’ prognosis and cell proliferation and viability in lung adenocarcinoma. Hum Pathol 46:217–224. https://doi.org/10.1016/j.humpath.2014.07.026

Article  CAS  PubMed  Google Scholar 

Liu G, Chen X (2006) Regulation of the p53 transcriptional activity. J Cell Biochem 97:448–458. https://doi.org/10.1002/jcb.20700

Article  CAS  PubMed  Google Scholar 

Liu Y, Gu W (2022) p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ 29:895–910. https://doi.org/10.1038/s41418-022-00943-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Lin XJ, Wang CP, Yan KK, Zhao LY, An WX, Liu XD (2014) Association between smoking and p53 mutation in lung cancer: a meta-analysis. Clin Oncol (royal College of Radiologists (great Britain)) 26:18–24. https://doi.org/10.1016/j.clon.2013.09.003

Article  CAS  Google Scholar 

Lv B, Zhang B, Hu XY, Zeng QD (2016) Heparanase regulates in vitro VEGF-C expression and its clinical significance to pancreatic ductal cell adenocarcinoma. Oncol Lett 11:1327–1334. https://doi.org/10.3892/ol.2016.4085

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lv Q, Wu K, Liu F, Wu W, Chen Y, Zhang W (2018) Interleukin-17A and heparanase promote angiogenesis and cell proliferation and invasion in cervical cancer. Int J Oncol 53:1809–1817. https://doi.org/10.3892/ijo.2018.4503

Article  CAS  PubMed  Google Scholar 

Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP (2011) Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the Warburg effect: implications for PET imaging of human tumors. Cell Cycle (Georgetown, Tex.) 10:2504–2520. https://doi.org/10.4161/cc.10.15.16585

Article  CAS  PubMed  Google Scholar 

Masola V, Bellin G, Gambaro G, Onisto M (2018) Heparanase: a multitasking protein involved in extracellular matrix (ECM) remodeling and intracellular events. Cells. https://doi.org/10.3390/cells7120236

Article  PubMed  PubMed Central  Google Scholar 

Masola V, Zaza G, Gambaro G, Franchi M, Onisto M (2020) Role of heparanase in tumor progression: molecular aspects and therapeutic options. Semin Cancer Biol 62:86–98. https://doi.org/10.1016/j.semcancer.2019.07.014

Article  CAS  PubMed  Google Scholar 

Mogi A, Kuwano H (2011) TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol 2011:583929. https://doi.org/10.1155/2011/583929

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2:a001107. https://doi.org/10.1101/cshperspect.a001107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113:E6806-e6812. https://doi.org/10.1073/pnas.1607152113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng M, Hu Q, Wu Z, Wang B, Wang C, Yu F (2023) Mutation of TP53 confers ferroptosis resistance in lung cancer through the FOXM1/MEF2C axis. Am J Pathol 193:1587–1602. https://doi.org/10.1016/j.ajpath.2023.05.003

Article  CAS  PubMed  Google Scholar 

Prieto-Bermejo R, Hernández-Hernández A (2017) The importance of NADPH oxidases and redox signaling in angiogenesis. Antioxidants (Basel, Switzerland). https://doi.org/10.3390/antiox6020032

Article  PubMed  Google Scholar 

Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115:2449–2457. https://doi.org/10.1182/blood-2009-07-234757

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qadir A, Khalid Z, Kashan Theba F, Mujtaba Ali M, Asif M, Rizvi F (2023) Celecoxib and bevacizumab synergistically inhibit non-small cell lung cancer by inducing apoptosis and modulating VEGF and MMP-9 expression. Pak J Pharm Sci 36:501–506

CAS  PubMed  Google Scholar 

Tang B, Yang S (2020) Involvement of heparanase in gastric cancer progression and immunotherapy. Adv Exp Med Biol 1221:351–363. https://doi.org/10.1007/978-3-030-34521-1_13

Article  CAS  PubMed  Google Scholar 

Tang Z, Jiang W, Mao M, Zhao J, Chen J, Cheng N (2021) Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin Transl Med 11:e390. https://doi.org/10.1002/ctm2.390

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22:569–575. https://doi.org/10.1016/j.celrep.2017.12.077

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsao MS, Aviel-Ronen S, Ding K, Lau D, Liu N, Sakurada A, Whitehead M, Zhu CQ, Livingston R, Johnson DH, Rigas J, Seymour L, Winton T, Shepherd FA (2007) Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol off J Am Soc Clin Oncol 25:5240–5247. https://doi.org/10.1200/jco.2007.12.6953

Article  Google Scholar 

Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N (2016) Heparanase: from basic research to therapeutic applications in cancer and inflammation. Drug Resistance Updates Rev Comment Antimicrob Anticancer Chemother 29:54–75. https://doi.org/10.1016/j.drup.2016.10.001

留言 (0)

沒有登入
gif