AMPK as a mediator of tissue preservation: time for a shift in dogma?

Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

Article  CAS  PubMed  Google Scholar 

Sartori, R., Romanello, V. & Sandri, M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat. Commun. 12, 330 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mitch, W. E. & Goldberg, A. L. Mechanisms of muscle wasting – the role of the ubiquitin–proteasome pathway. N. Engl. J. Med. 335, 1897–1905 (1996).

Article  CAS  PubMed  Google Scholar 

Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

Article  CAS  PubMed  Google Scholar 

Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Steinberg, G. R. & Hardie, D. G. New insights into activation and function of the AMPK. Nat. Rev. Mol. Cell Biol. 24, 255–272 (2023).

Article  CAS  PubMed  Google Scholar 

Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

Article  PubMed  PubMed Central  Google Scholar 

Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).

Article  CAS  PubMed  Google Scholar 

Steinberg, G. R. et al. Tumor necrosis factor ɑ-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. Cell Metab. 4, 465–474 (2006).

Article  CAS  PubMed  Google Scholar 

Joseph, B. K. et al. Inhibition of AMP kinase by the protein phosphatase 2A heterotrimer, PP2APpp2r2d. J. Biol. Chem. 290, 10588–10598 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A. & Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, Y. L. et al. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Cell Metab. 18, 546–555 (2013).

Article  CAS  PubMed  Google Scholar 

Fearon, K. C. H., Glass, D. J. & Guttridge, D. C. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 16, 153–166 (2012).

Article  CAS  PubMed  Google Scholar 

White, J. P. et al. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am. J. Physiol. Endocrinol. Metab. 304, E1042–E1052 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguilar-Recarte, D. et al. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep. 36, 109501 (2021).

Article  CAS  PubMed  Google Scholar 

Grossberg, A. J., Scarlett, J. M. & Marks, D. L. Hypothalamic mechanisms in cachexia. Physiol. Behav. 100, 478–489 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bennani-Baiti, N. & Walsh, D. Animal models of the cancer anorexia-cachexia syndrome. Support. Care Cancer 19, 1451–1463 (2011).

Article  PubMed  Google Scholar 

Winter, A., MacAdams, J. & Chevalier, S. Normal protein anabolic response to hyperaminoacidemia in insulin-resistant patients with lung cancer cachexia. Clin. Nutr. 31, 765–773 (2012).

Article  CAS  PubMed  Google Scholar 

Yoshikawa, T., Noguchi, Y., Doi, C., Makino, T. & Nomura, K. Insulin resistance in patients with cancer: relationships with tumor site, tumor stage, body-weight loss, acute-phase response, and energy expenditure. Nutrition 17, 590–593 (2001).

Article  CAS  PubMed  Google Scholar 

Yoshikawa, T. et al. Insulin resistance was connected with the alterations of substrate utilization in patients with cancer. Cancer Lett. 141, 93–98 (1999).

Article  CAS  PubMed  Google Scholar 

Heber, D., Byerly, L. O. & Chlebowski, R. T. Metabolic abnormalities in the cancer patient. Cancer 55, 225–229 (1985).

Article  CAS  PubMed  Google Scholar 

Màrmol, J. M. et al. Insulin resistance in patients with cancer: a systematic review and meta-analysis. Acta Oncol. 62, 364–371 (2023).

Article  PubMed  Google Scholar 

Smith, K. L. & Tisdale, M. J. Increased protein degradation and decreased protein synthesis in skeletal muscle during cancer cachexia. Br. J. Cancer 67, 680–685 (1993).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Emery, P. W., Edwards, R. H., Rennie, M. J., Souhami, R. L. & Halliday, D. Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br. Med. J. 289, 584–586 (1984).

Article  CAS  Google Scholar 

Jeevanandam, M., Lowry, S., Horowitz, G. & Brennan, M. Cancer cachexia and protein metabolism. Lancet 323, 1423–1426 (1984).

Article  Google Scholar 

Lundholm, K., Edström, S., Karlberg, I., Ekman, L. & Scherstén, T. Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients. Cancer 50, 1142–1150 (1982).

Article  CAS  PubMed  Google Scholar 

Han, X. et al. Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism 105, 154169 (2020).

Article  CAS  PubMed  Google Scholar 

Goncalves, M. D. et al. Fenofibrate prevents skeletal muscle loss in mice with lung cancer. Pro. Natl Acad. Sci. USA 115, E743–E752 (2018).

Article  CAS  Google Scholar 

Rohm, M. et al. An AMP-activated protein kinase-stabilizing peptide ameliorates adipose tissue wasting in cancer cachexia in mice. Nat. Med. 22, 1120–1130 (2016).

Article  CAS  PubMed  Google Scholar 

Beck, S. A. & Tisdale, M. J. Effect of cancer cachexia on triacylglycerol/fatty acid substrate cycling in white adipose tissue. Lipids 39, 1187–1189 (2004).

Article  CAS  PubMed  Google Scholar 

Dilman, V. M., Berstein, L. M., Ostroumova, M. N., Tsyrlina, Y. V. & Golubev, A. G. Peculiarities of hyperlipidaemia in tumour patients. Br. J. Cancer 43, 637–643 (1981).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kazemi-Bajestani, S. M., Mazurak, V. C. & Baracos, V. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Semin. Cell Dev. Biol. 54, 2–10 (2016).

Article  PubMed  Google Scholar 

Stene, G. B. et al. Changes in skeletal muscle mass during palliative chemotherapy in patients with advanced lung cancer. Acta Oncol. 54, 340–348 (2015).

Article  CAS  PubMed  Google Scholar 

Antoun, S., Borget, I. & Lanoy, E. Impact of sarcopenia on the prognosis and treatment toxicities in patients diagnosed with cancer. Curr. Opin. Support. Palliat. Care 7, 383–389 (2013).

Article  PubMed  Google Scholar 

Couch, M. et al. Cancer cachexia syndrome in head and neck cancer patients: part I. Diagnosis, impact on quality of life and survival, and treatment. Head. Neck 29, 401–411 (2007).

Article  PubMed  Google Scholar 

Argilés, J. M., Busquets, S., Stemmler, B. & López-Soriano, F. J. Cancer cachexia: understanding the molecular basis. Nat. Rev. Cancer 14, 754–762 (2014).

Article  PubMed  Google Scholar 

Anker, M. S. et al. Orphan disease status of cancer cachexia in the USA and in the European Union: a systematic review. J. Cachexia Sarcopenia Muscle 10, 22–

留言 (0)

沒有登入
gif