Catalytically faster power

Li, Y. et al. Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014).

Article  CAS  PubMed  Google Scholar 

Chen, S. et al. Aqueous rechargeable zinc air batteries operated at −110 °C. Chem 9, 497–510 (2023).

Article  CAS  Google Scholar 

Chao, D. et al. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 6, eaba4098 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun, W. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

Article  CAS  PubMed  Google Scholar 

Hou, Y. et al. MBene promoted Zn peroxide chemistry in rechargeable near-neutral Zn–air batteries. Energy Environ. Sci. 16, 3407–3415 (2023).

Article  CAS  Google Scholar 

Sun, W., Küpers, V., Wang, F., Bieker, P. & Winter, M. A non-alkaline electrolyte for electrically rechargeable zinc-air batteries with long-term operation stability in ambient air. Angew. Chem. Int. Ed. 61, e202207353 (2022).

Article  CAS  Google Scholar 

Zhang, W. et al. Two-electron redox chemistry via single-atom catalyst for reversible zinc–air batteries. Nat. Sustain. 7, 463–473 (2024).

Article  Google Scholar 

Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

Article  CAS  Google Scholar 

Liu, S. et al. Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022).

Article  CAS  Google Scholar 

Li, X. et al. Advances in heterogeneous single-cluster catalysis. Nat. Rev. Chem. 7, 754–767 (2023).

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif