Intercalation in 2D materials and in situ studies

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

Article  CAS  PubMed  Google Scholar 

Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

Article  CAS  PubMed  Google Scholar 

Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

Article  CAS  PubMed  Google Scholar 

Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

Article  CAS  PubMed  Google Scholar 

Wu, Y., Li, D., Wu, C.-L., Hwang, H. Y. & Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 8, 41–53 (2023). An authoritative review on intercalation and electrostatic gating in 2D materials.

Article  Google Scholar 

Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

Article  CAS  PubMed  Google Scholar 

Zhao, X. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020). A representative work on self-intercalation, presenting the self-intercalation of Ta atoms in 2D TaS2crystals, highlighting that self-intercalation is an approach to grow a new class of 2D materials with stoichiometry-dependent or composition-dependent properties.

Article  CAS  PubMed  Google Scholar 

Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018). A representative work on spatially controlled intercalation, presenting the spatially controlled intercalation of Cu and/or Co atoms in 2D SnS2crystals realized by combining solution-based chemical intercalation with lithography.

Article  CAS  PubMed  Google Scholar 

Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

Article  CAS  PubMed  Google Scholar 

Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

Article  CAS  PubMed  Google Scholar 

Kühne, M. et al. Ultrafast lithium diffusion in bilayer graphene. Nat. Nanotechnol. 12, 895–900 (2017).

Article  PubMed  Google Scholar 

Zhu, X., Li, D., Liang, X. & Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019). A representative work on reversible electrochemical intercalation, presenting the reversible intercalation of Li+in 2D MoS2crystals, demonstrating that reversible intercalation of alkali metal ions leads to reversible phase transitions of 2D transition metal dichalcogenides.

Article  CAS  PubMed  Google Scholar 

Bediako, D. K. et al. Heterointerface effects in the electrointercalation of van der Waals heterostructures. Nature 558, 425–429 (2018). A representative work on intercalation in 2D van der Waals heterostructures, presenting the electrochemical Li+intercalation in 2D hexagonal boron nitride/MoS2/graphene/hexagonal boron nitride heterostructures.

Article  CAS  PubMed  Google Scholar 

Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018). A representative work on electrochemical organic ion intercalation, presenting the electrochemical intercalation of cetyl-trimethylammonium ions in 2D black phosphorus crystals, demonstrating that intercalation can trigger c-axis lattice expansion and result in monolayer natures in intercalated 2D materials.

Article  CAS  PubMed  Google Scholar 

Wu, Z. et al. Intercalation-driven ferroelectric-to-ferroelastic conversion in a layered hybrid perovskite crystal. Nat. Commun. 13, 3104 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022). A representative work on molecular intercalation, presenting the intercalation of chiral molecules in 2D TaS2and TiS2crystals, highlighting that chiral molecular intercalation can make the intercalated 2D materials show chiral-induced spin selectivity.

Article  CAS  PubMed  Google Scholar 

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

Article  CAS  PubMed  Google Scholar 

Yang, R. et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth. 2, 101–118 (2023). An authoritative review on intercalation as a tool for the exfoliation of 2D materials.

Article  Google Scholar 

Wan, J. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).

Article  CAS  PubMed  Google Scholar 

Rajapakse, M. et al. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. npj 2D Mater. Appl. 5, 30 (2021).

Article  CAS  Google Scholar 

Wang, S. et al. Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals. Nat. Protoc. 18, 2814–2837 (2023).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Intercalation strategy in 2D materials for electronics and optoelectronics. Small Methods 5, 2100567 (2021).

Article  CAS  Google Scholar 

Yang, R. et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022). A representative work on intercalation as a tool for the exfoliation of 2D materials, presenting the electrochemical intercalation of Li+in bulk materials for the exfoliation production of 2D MoS2, WS2, TiS2, TaS2, ZrS2, graphene, hexagonal boron nitride, NbSe2, WSe2, Sb2Se3and Bi2Te3.

Article  CAS  PubMed  Google Scholar 

Chen, H., Ma, H. & Li, C. Host–guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano 15, 15502–15537 (2021).

Article  CAS  PubMed  Google Scholar 

Li, X. et al. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 6, 389–404 (2022).

Article  PubMed  Google Scholar 

Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

Article  CAS  PubMed  Google Scholar 

Zhang, L. et al. 2D atomic crystal molecular superlattices by soft plasma intercalation. Nat. Commun. 11, 5960 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, Y. et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation. Nat. Commun. 11, 2646 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung, N. et al. Optical reflectivity and Raman scattering in few-layer-thick graphene highly doped by K and Rb. ACS Nano 5, 5708–5716 (2011).

Article  CAS  PubMed  Google Scholar 

Bointon, T. H. et al. Approaching magnetic ordering in graphene materials by FeCl3 intercalation. Nano Lett. 14, 1751–1755 (2014).

Article  CAS  PubMed  Google Scholar 

Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

Article  CAS  Google Scholar 

Zhu, X. et al. Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction. Nano Lett. 22, 2956–2963 (2022).

Article  CAS  PubMed  Google Scholar 

Zhang, J. et al. Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nat. Commun. 9, 5289 (2018). A representative work on intercalation from the top surface, presenting the Li+and Na+intercalation through the top surface of 2D MoS2crystals realized by sealing the edges of MoS2with metal or other encapsulating agents.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kühne, M. et al. Reversible superdense ordering of lithium between two graphene sheets. Nature 564, 234–239 (2018). A representative work on in situ transmission electron microscopic observation of intercalation in 2D materials, examining the Li+intercalation and de-intercalation process in double-layer graphene sheet, indicating that Li+tends to form multilayer ultra-dense and closely packed ordered structure in the middle of double-layer graphene sheets.

Article  PubMed  Google Scholar 

Sood, A. et al. Electrochemical ion insertion from the atomic to the device scale. Nat. Rev. Mater. 6, 847–867 (2021).

Article  CAS  Google Scholar 

Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

Article  CAS  PubMed  Google Scholar 

Cho, J.-H. et al. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. J. Am. Chem. Soc. 136, 16116–16119 (2014).

留言 (0)

沒有登入
gif