Combined transcriptome and proteome analysis reveals MSN and ARFIP2 as biomarkers for trastuzumab resistance of breast cancer

Lei S et al (2021) Global patterns of breast cancer incidence and mortality: a population-based cancer registry data analysis from 2000 to 2020. Cancer Commun 41(11):1183–1194

Article  Google Scholar 

Howlader N et al (2018) Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiol Biomarkers Prev 27(6):619–626

Article  CAS  PubMed  Google Scholar 

Slamon DJ et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235(4785):177–182

Article  CAS  PubMed  Google Scholar 

Collins DM et al (2021) Effects of HER family-targeting tyrosine kinase inhibitors on antibody-dependent cell-mediated cytotoxicity in HER2-expressing breast cancer. Clin Cancer Res 27(3):807–818

Article  CAS  PubMed  Google Scholar 

Junttila TT et al (2009) Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 15(5):429–440

Article  CAS  PubMed  Google Scholar 

Nagata Y et al (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2):117–127

Article  CAS  PubMed  Google Scholar 

Bredin P, Walshe JM, Denduluri N (2020) Systemic therapy for metastatic HER2-positive breast cancer. Semin Oncol 47(5):259–269

Article  CAS  PubMed  Google Scholar 

Lee HJ et al (2014) HER2 heterogeneity affects trastuzumab responses and survival in patients with HER2-positive metastatic breast cancer. Am J Clin Pathol 142(6):755–766

Article  PubMed  Google Scholar 

Rimawi MF et al (2018) Low PTEN levels and PIK3CA mutations predict resistance to neoadjuvant lapatinib and trastuzumab without chemotherapy in patients with HER2 over-expressing breast cancer. Breast Cancer Res Treat 167(3):731–740

Article  CAS  PubMed  Google Scholar 

Ozkavruk Eliyatkin N et al (2016) The role of p95HER2 in trastuzumab resistance in breast cancer. J buon 21(2):382–389

PubMed  Google Scholar 

Mercogliano MF et al (2017) Invasive micropapillary carcinoma of the breast overexpresses MUC4 and is associated with poor outcome to adjuvant trastuzumab in HER2-positive breast cancer. BMC Cancer 17(1):895

Article  PubMed  PubMed Central  Google Scholar 

Berns K et al (2016) Loss of ARID1A Activates ANXA1, which serves as a predictive biomarker for trastuzumab resistance. Clin Cancer Res 22(21):5238–5248

Article  CAS  PubMed  Google Scholar 

Cimino D et al (2008) Identification of new genes associated with breast cancer progression by gene expression analysis of predefined sets of neoplastic tissues. Int J Cancer 123(6):1327–1338

Article  CAS  PubMed  Google Scholar 

Gallardo A et al (2012) Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer 106(8):1367–1373

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu HL et al (2019) Correlation between procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 and breast cancer. Int J Clin Exp Pathol 12(3):1015–1021

CAS  PubMed  PubMed Central  Google Scholar 

Liu H et al (2015) SLC9A3R1 stimulates autophagy via BECN1 stabilization in breast cancer cells. Autophagy 11(12):2323–2334

Article  PubMed  PubMed Central  Google Scholar 

Müller FE et al (2015) NDUFA4 expression in clear cell renal cell carcinoma is predictive for cancer-specific survival. Am J Cancer Res 5(9):2816–2822

PubMed  PubMed Central  Google Scholar 

Wang DW et al (2016) Identification of CD20, ECM, and ITGA as biomarkers for osteosarcoma by integrating transcriptome analysis. Med Sci Monit 22:2075–2085

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu X et al (2019) Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J Exp Clin Cancer Res 38(1):497

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lazaro G et al (2013) Targeting focal adhesion kinase in ER+/HER2+ breast cancer improves trastuzumab response. Endocr Relat Cancer 20(5):691–704

Article  CAS  PubMed  Google Scholar 

Leech AO et al (2018) Cleavage of the extracellular domain of junctional adhesion molecule-A is associated with resistance to anti-HER2 therapies in breast cancer settings. Breast Cancer Res 20(1):140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang XH et al (2010) Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists. Cancer Res 70(6):2256–2263

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanoh H, Williger BT, Exton JH (1997) Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J Biol Chem 272(9):5421–5429

Article  CAS  PubMed  Google Scholar 

Cruz-Garcia D et al (2013) Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export. EMBO J 32(12):1717–1729

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambroggio EE et al (2013) Arf1 and membrane curvature cooperate to recruit Arfaptin2 to liposomes. PLoS ONE 8(4):e62963

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moss J, Vaughan M (1995) Structure and function of ARF proteins: activators of cholera toxin and critical components of intracellular vesicular transport processes. J Biol Chem 270(21):12327–12330

Article  CAS  PubMed  Google Scholar 

Tsai SC et al (1992) Differential interaction of ADP-ribosylation factors 1, 3, and 5 with rat brain Golgi membranes. Proc Natl Acad Sci U S A 89(19):9272–9276

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shin OH, Exton JH (2001) Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1. Biochem Biophys Res Commun 285(5):1267–1273

Article  CAS  PubMed  Google Scholar 

Judith D et al (2019) ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J Cell Biol 218(5):1634–1652

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bommanavar S et al (2022) Membrane-organizing extension spike protein and its role as an emerging biomarker in oral squamous cell carcinoma. J Oral Maxillofac Pathol 26(1):82–86

Article  PubMed  PubMed Central  Google Scholar 

Tsukita S, Yonemura S (1999) Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J Biol Chem 274(49):34507–34510

Article  CAS  PubMed  Google Scholar 

Furthmayr H, Lankes W, Amieva M (1992) Moesin, a new cytoskeletal protein and constituent of filopodia: its role in cellular functions. Kidney Int 41(3):665–670

Article  CAS  PubMed  Google Scholar 

Jung Y, McCarty JH (2012) Band 4.1 proteins regulate integrin-dependent cell spreading. Biochem Biophys Res Commun 426(4):578–584

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato N et al (1992) A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J Cell Sci 103(pt 1):131–143

Article  CAS  PubMed  Google Scholar 

Haynes J et al (2011) Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 22(24):4750–4764

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lan S et al (2020) Moesin facilitates metastasis of hepatocellular carcinoma cells by improving invadopodia formation and activating β-catenin/MMP9 axis. Biochem Biophys Res Commun 524(4):861–868

Article  CAS  PubMed  Google Scholar 

Yano K et al (2020) Regulation of breast cancer resistance protein and P-glycoprotein by ezrin, radixin and moesin in lung, intestinal and renal cancer cell lines. J Pharm Pharmacol 72(4):575–582

Article  CAS 

留言 (0)

沒有登入
gif