Polyvascular Disease: A Narrative Review of Risk Factors, Clinical Outcomes and Treatment

Aday AW, Matsushita K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ Res. 2021;128:1818–32. https://doi.org/10.1161/CIRCRESAHA.121.318535.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fowkes FGR, Low L-P, Tuta S, Kozak J. Ankle-brachial index and extent of atherothrombosis in 8891 patients with or at risk of vascular disease: results of the international AGATHA study. Eur Heart J. 2006;27:1861–7.

Article  PubMed  Google Scholar 

Gutierrez JA, Aday AW, Patel MR, Jones WS. Polyvascular Disease: Reappraisal of the Current Clinical Landscape. Circ Cardiovasc Interv. 2019;12:e007385. https://doi.org/10.1161/CIRCINTERVENTIONS.119.007385.

Article  PubMed  PubMed Central  Google Scholar 

Eikelboom JW, et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N Engl J Med. 2017;377:1319–30. https://doi.org/10.1056/NEJMoa1709118.

Article  CAS  PubMed  Google Scholar 

Weissler EH, et al. Polyvascular disease: A narrative review of current evidence and a consideration of the role of antithrombotic therapy. Atherosclerosis. 2020;315:10–7. https://doi.org/10.1016/j.atherosclerosis.2020.11.001.

Article  CAS  PubMed  Google Scholar 

Steg PG, et al. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA. 2007;297:1197–206. https://doi.org/10.1001/jama.297.11.1197.

Article  CAS  PubMed  Google Scholar 

Hirsch AT, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286:1317–24. https://doi.org/10.1001/jama.286.11.1317.

Article  CAS  PubMed  Google Scholar 

Bhatt DL, et al. Prior polyvascular disease: risk factor for adverse ischaemic outcomes in acute coronary syndromes. Eur Heart J. 2009;30:1195–202. https://doi.org/10.1093/eurheartj/ehp099.

Article  PubMed  Google Scholar 

Collet J-P, et al. Systematic detection of polyvascular disease combined with aggressive secondary prevention in patients presenting with severe coronary artery disease: The randomized AMERICA Study. Int J Cardiol. 2018;254:36–42. https://doi.org/10.1016/j.ijcard.2017.11.081.

Article  PubMed  Google Scholar 

Gutierrez JA, et al. Polyvascular Disease and Risk of Major Adverse Cardiovascular Events in Peripheral Artery Disease: A Secondary Analysis of the EUCLID Trial. JAMA Netw Open. 2018;1:e185239. https://doi.org/10.1001/jamanetworkopen.2018.5239.

Article  PubMed  PubMed Central  Google Scholar 

Hiatt WR, et al. Ticagrelor versus Clopidogrel in Symptomatic Peripheral Artery Disease. N Engl J Med. 2017;376:32–40. https://doi.org/10.1056/NEJMoa1611688.

Article  CAS  PubMed  Google Scholar 

Vidakovic R, et al. The prevalence of polyvascular disease in patients referred for peripheral arterial disease. Eur J Vasc Endovasc Surg. 2009;38:435–40. https://doi.org/10.1016/j.ejvs.2009.05.006.

Article  CAS  PubMed  Google Scholar 

Libby P, Ridker PM. Inflammation and Atherothrombosis. J Am Coll Cardiol. 2006;48:A33–46. https://doi.org/10.1016/j.jacc.2006.08.011.

Article  CAS  Google Scholar 

VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol. 2004;24:12–22. https://doi.org/10.1161/01.ATV.0000105054.43931.f0.

Article  CAS  PubMed  Google Scholar 

Dikilitas O, Satterfield BA, Kullo IJ. Risk Factors for Polyvascular Involvement in Patients With Peripheral Artery Disease: A Mendelian Randomization Study. J Am Heart Assoc. 2020;9:e017740. https://doi.org/10.1161/JAHA.120.017740.

Article  PubMed  PubMed Central  Google Scholar 

Tian Y, et al. Association of Polyvascular Disease and Elevated Interleukin-6 With Outcomes in Acute Ischemic Stroke or Transient Ischemic Attack. Front Neurol. 2021;12. https://doi.org/10.3389/fneur.2021.661779.

Elias-Smale SE, Kardys I, Oudkerk M, Hofman A, Witteman JC. C-reactive protein is related to extent and progression of coronary and extra-coronary atherosclerosis; results from the Rotterdam study. Atherosclerosis. 2007;195:e195-202. https://doi.org/10.1016/j.atherosclerosis.2007.07.006.

Article  CAS  PubMed  Google Scholar 

Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev. 2014;22:147–51. https://doi.org/10.1097/crd.0000000000000021.

Article  PubMed  Google Scholar 

Ding N, et al. Cigarette Smoking, Smoking Cessation, and Long-Term Risk of 3 Major Atherosclerotic Diseases. J Am Coll Cardiol. 2019;74:498–507. https://doi.org/10.1016/j.jacc.2019.05.049.

Article  PubMed  PubMed Central  Google Scholar 

Mora S, et al. Lipoprotein particle profiles by nuclear magnetic resonance compared with standard lipids and apolipoproteins in predicting incident cardiovascular disease in women. Circulation. 2009;119:931–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pradhan AD, et al. Symptomatic peripheral arterial disease in women: nontraditional biomarkers of elevated risk. Circulation. 2008;117:823–31.

Article  PubMed  Google Scholar 

Murabito JM, et al. Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ Cardiovasc Genet. 2012;5:100–12. https://doi.org/10.1161/CIRCGENETICS.111.961292.

Article  CAS  PubMed  Google Scholar 

• Klarin D, et al. Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nat Med. 2019;25:1274–9. https://doi.org/10.1038/s41591-019-0492-5. Findings from this genome-wide association study of over 32 million DNA sequence variants in patients with peripheral artery disease found 19 loci associated with peripiheral artery disease and 11 loci associated with disease in coronary, cerebral, and peripheral vascular territories.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linsel-Nitschke P, et al. Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease–a Mendelian Randomisation study. PLoS ONE. 2008;3:e2986. https://doi.org/10.1371/journal.pone.0002986.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mukherjee D, Eagle K. The importance of early diagnosis and treatment in peripheral arterial disease: insights from the PARTNERS and REACH registries. Curr Vasc Pharmacol. 2010;8:293–300. https://doi.org/10.2174/157016110791112304.

Article  CAS  PubMed  Google Scholar 

Mukherjee D, et al. Impact of prior peripheral arterial disease and stroke on outcomes of acute coronary syndromes and effect of evidence-based therapies (from the Global Registry of Acute Coronary Events). Am J Cardiol. 2007;100:1–6. https://doi.org/10.1016/j.amjcard.2007.02.046.

Article  PubMed  Google Scholar 

Alberts MJ, et al. Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry. Eur Heart J. 2009;30:2318–26. https://doi.org/10.1093/eurheartj/ehp355.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Q, et al. Asymptomatic polyvascular disease and the risks of cardiovascular events and all-cause death. Atherosclerosis. 2017;262:1–7. https://doi.org/10.1016/j.atherosclerosis.2017.04.015.

Article  CAS  PubMed  Google Scholar 

Bonaca MP, et al. Peripheral Revascularization in Patients With Peripheral Artery Disease With Vorapaxar: Insights From the TRA 2 degrees P-TIMI 50 Trial. JACC Cardiovasc Interv. 2016;9:2157–64. https://doi.org/10.1016/j.jcin.2016.07.034.

Article  PubMed  Google Scholar 

Bonaca MP, et al. Low-Density Lipoprotein Cholesterol Lowering With Evolocumab and Outcomes in Patients With Peripheral Artery Disease: Insights From the FOURIER Trial (Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk). Circulation. 2018;137:338–50. https://doi.org/10.1161/CIRCULATIONAHA.117.032235.

Article  CAS  PubMed  Google Scholar 

Bonaca M, et al. Vorapaxar Reduces Peripheral Revascularization Regardless of the number of diseased territories: insights from the Tra2p–Timi 50 trial. J Am Coll Cardiol. 2013;61:E2018–E2018. https://doi.org/10.1016/S0735-1097(13)62018-5.

Article  Google Scholar 

Subherwal S, et al. Polyvascular disease and long-term cardiovascular outcomes in older patients with non-ST-segment-elevation myocardial infarction. Circ Cardiovasc Qual Outcomes. 2012;5:541–9. https://doi.org/10.1161/circoutcomes.111.964379.

Article  PubMed  PubMed Central  Google Scholar 

Gutierrez JA, et al. Prevalence and Outcomes of Polyvascular (Coronary, Peripheral, or Cerebrovascular) Disease in Patients With Diabetes Mellitus (From the SAVOR-TIMI 53 Trial). Am J Cardiol. 2019;123:145–52. https://doi.org/10.1016/j.amjcard.2018.09.014.

Article  PubMed  Google Scholar 

Verma S, et al. Effect of Liraglutide on Cardiovascular Events in Patients With Type 2 Diabetes Mellitus and Polyvascular Disease: Results of the LEADER Trial. Circulation. 2018;137:2179–83. https://doi.org/10.1161/CIRCULATIONAHA.118.033898.

Article  CAS  PubMed  Google Scholar 

Bonaca MP, et al. Polyvascular disease, type 2 diabetes, and long-term vascular risk: a secondary analysis of the IMPROVE-IT trial. Lancet Diabetes Endocrinol. 2018;6:934–43. https://doi.org/10.1016/s2213-8587(18)30290-0.

留言 (0)

沒有登入
gif