Exploring the Full Potential of Radiofrequency Technology: A Practical Guide to Advanced Radiofrequency Ablation for Complex Ventricular Arrhythmias

Chugh SS, Reinier K, Teodorescu C, et al. Epidemiology of sudden cardiac death: clinical and research implications. Prog Cardiovasc Dis. 2008;51:213–28.

Article  PubMed  PubMed Central  Google Scholar 

Poole JE, Johnson GW, Hellkamp AS, et al. Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med. 2008;359:1009–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sweeney MO, Sherfesee L, DeGroot PJ, et al. Differences in effects of electrical therapy type for ventricular arrhythmias on mortality in implantable cardioverter-defibrillator patients. Heart Rhythm. 2010;7:353–60.

Article  PubMed  Google Scholar 

Tung R, Xue Y, Chen M, et al. First-line catheter ablation of monomorphic ventricular tachycardia in cardiomyopathy concurrent with defibrillator implantation: the PAUSE-SCD randomized trial. Circulation. 2022;145(25):1839–49.

Article  CAS  PubMed  Google Scholar 

Arenal A, Avila P, Jimenez-Candil J, et al. Substrate ablation vs antiarrhythmic drug therapy for symptomatic ventricular tachycardia. J Am Coll Cardiol. 2022;79(15):1441–53.

Article  CAS  PubMed  Google Scholar 

Della Bella P, Baratto F, Vergara P, et al. Does timing of ventricular tachycardia ablation affect prognosis in patients with an implantable cardioverter defibrillator? Results from the multicenter randomized PARTITA trial. Circulation. 2022;145:1829–38.

Article  CAS  PubMed  Google Scholar 

Tonko J, Lambiase P. A review of novel and emerging non-radiofrequency ablation modalities in ventricular arrhythmias: towards an individualized substrate-guided choice of ablation technology. Eur J Arrhythm Electrophysiol. 2023;9(1):11–21.

Article  Google Scholar 

Ghannam M, Siontis KC, Kim HM, et al. Stepwise approach for ventricular tachycardia ablation in patients with predominantly intramural scar. JACC: Clinical EP. 2020;6(4):448–60.

Google Scholar 

Komatsu Y, Cochet H, Jadidi A, et al. Regional myocardial wall thinning at multidetector computed tomography correlates to arrhythmogenic substrate in post-infarction ventricular tachycardia: assessment of structural and electrical substrate. Circ Arrhythm Electrophysiol. 2013;6:342–50.

Article  PubMed  Google Scholar 

Esposito A, Palmisano A, Antunes S, et al. Cardiac CT with delayed enhancement in the characterization of ventricular tachycardia structural substrate: relationship between CT-segmented scar and electro-anatomic mapping. JACC Cardiovasc Imaging. 2016;9:822–32.

Article  PubMed  Google Scholar 

Ghannam M, Cochet H, Jais P, et al. Correlation between computer tomography- derived scar topography and critical ablation sites in post-infarction ventricular tachycardia. J Cardiovasc Electrophysiol. 2018;29:438–45.

Article  PubMed  Google Scholar 

Takigawa M, Duchateau J, Sacher F, et al. Are wall thickness channels defined by computed tomography predictive of isthmuses of post-infarction ventricular tachycardia? Heart Rhythm. 2019;16(11):1661–8.

Article  PubMed  Google Scholar 

Xu L, Koshknab M, Berger RD, et al. Lipomatous metaplasia enables ventricular tachycardia by reducing current loss within the protected corridor. JACC Clin Electrophys. 2022;8(10):1274–85.

Article  Google Scholar 

Xu L, Zahid S, Khoshknab M, et al. Lipomatous metaplasia prolongs repolarization and increases repolarisation dispersion within post infarct ventricular tachycardia circuit cites. Europace. 2023;25(2):496–505.

Article  PubMed  Google Scholar 

Zipse MW, Edward JA, Zheng L, et al. Impact of epicardial adipose tissue and catheter ablation strategy on biophysical parameters and ablation lesion characteristics. J Cardiovasc Electrophysiol. 2020;31(5):1114–24.

Article  PubMed  Google Scholar 

Venlet J, Piers SRD, Kapel GFL, et al. Unipolar endocardial voltage mapping in the right ventricle: optimal cutoff values correcting for computed tomography-derived epicardial fat thickness and their clinical value for substrate delineation. Circ AE. 2017;10(8):e005175.

Google Scholar 

Aziz Z, Shatz D, Raiman M, et al. Targeted ablation of ventricular tachycardia guided by wave front discontinuities during sinus rhythm: a new functional substrate mapping strategy. Circulation. 2019;140:1383–97.

Article  PubMed  Google Scholar 

Crinion D, Neira V, Al Hamad N, et al. Close-coupled pacing to Identify the “functional” substrate of ventricular tachycardia. Long term outcomes of the paced electrogram feature analysis technique. Heart Rhythm. 2021;18(5):723–31.

Article  PubMed  Google Scholar 

Hattori M, Komatsu Y, Naeemah QJ, et al. Rotational activation pattern during functional substrate mapping: novel target for catheter ablation of scar related ventricular tachycardia. Circulation AE. 2022;15(1):e010308.

CAS  Google Scholar 

Porta-Sánchez A, Jackson N, Lukac P, et al. Multi-centre study of ischemic ventricular tachycardia ablation with decrement-evoked potential (DEEP) mapping with extra stimulus. JACC Clin Electrophysiol. 2018;4:307–15.

Article  PubMed  Google Scholar 

Izquierdo M, Sanchez-Gomez JM, de Loma-Osorio AF, et al. Endo-epicardial versus only-endocardial ablation as a first line strategy for the treatment of ventricular tachycardia in patients with ischemic heart disease. Circulation: Arrhythm Electrophysiol. 2015;8(4):882–9.

Google Scholar 

Acosta J, Fernandez-Armenta J, Penela D, et al. Infarct transmurality as a criterion for first line endo-epicardial substrate guided ventricular tachycardia ablation in ischemic cardiomyopathy. Heart Rhythm. 2016;13(1):85–95.

Article  PubMed  Google Scholar 

Hendriks AA, Khan M, Geller L, et al. Ventricular tachycardia in ischemic cardiomyopathy; a combined endo-epicardial ablation as the first procedure versus a stepwise approach (EPILOGUE) study protocol for a randomized controlled trial). Trials. 2015;16:487.

Article  PubMed  PubMed Central  Google Scholar 

Bhaskaran A, Tung R, Stevenson WG, Kumar S. Catheter ablation of VT in non-ischaemic cardiomyopathies: endocardial, epicardial and intramural approaches. Heart Lung Circ. 2019;28(1):84–101.

Article  PubMed  Google Scholar 

Stevenson W, Tedrow U, Reddy V, et al. Infusion needle radiofrequency ablation for treatment of refractory ventricular arrhythmias. J Am Coll Cardiol. 2019;73(12):1413–25.

Article  PubMed  Google Scholar 

Nakagawa H, Yamanashi WS, Pitha JV, et al. Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation. 1995;91:2264–73.

Article  CAS  PubMed  Google Scholar 

Nguyen DT, Olson M, Zheng L, et al. Effect of irrigant characteristics on lesion formation after radiofrequency energy delivery using ablation catheters with actively cooled tips. J Cardiovasc Electrophys. 2015;792–798.

Barkagan M, Rottmann M, Leshem E, et al. Effect of baseline impedance on ablation lesion dimensions: a multi-modality concept validation from physics to clinical experience. Circ Arrhythm Electrophysiol. 2018;11(10):e006690.

Article  PubMed  Google Scholar 

Nguyen DT, Nguyen K, Zheng L, et al. Effect of environmental impedance surrounding a radiofrequency ablation catheter electrode on lesion characteristics. J Cardiovasc Electrophysiol. 2017;28:564–9.

Article  Google Scholar 

Huang H, Ravi V, Rhodes P, et al. Use of infrared thermography to delineate temperature gradients and critical isotherms during catheter ablation with normal and half normal saline: Implications for safety and efficacy. J Cardiovasc Electrophysiol. 2021;32(8):2035–44.

Article  PubMed  Google Scholar 

Tschabrunn CM, Pothineni NVK, Sauer WH, et al. Evaluation of radiofrequency ablation irrigation type: in vivo comparison of normal versus half-normal saline lesion characteristics. J Am Coll Cardiol Clin Electrophysiol. 2020;6:684–92.

Google Scholar 

Nguyen DT, Baykaner T, et al. The new normal. JACC Clin Electrophysiol. 2020;6(6):693–5.

Article  PubMed  PubMed Central  Google Scholar 

Nguyen DT, Tzou W, Sandhu A, et al. Prospective multicenter experience with cooled radiofrequency ablation using high impedance irrigant to target deep myoardial substrate refractory to standard ablation. JACC Clinical EP. 2018;4(9):1176–85.

Google Scholar 

Dong Z, Wang H, Ma K, et al. Half versus normal saline irrigation during catheter ablation of outflow tract ventricular arrhythmias (HALF): a multi-center, parallel, open-label, randomized controlled study. J Interv Card Electrophysiol. 2023. https://doi.org/10.1007/s10840-023-01558-0.

Article  PubMed  Google Scholar 

Demazumder D, Mirotznik MS, Schwartzman D. Biophysics of radiofrequency ablation using an irrigated electrode. J Interv Card Electrophysiol. 2001;5:377–89.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Futyma PR, Kulakowski P. Bipolar radiofrequency ablation supported by non-ionic catheter irrigation. EP Europace. 2020;22(Suppl 1):euaa162.010.

Article  Google Scholar 

Shapira-Daniels A, Barkagan M, Rottmann M, et al. Modulating baseline impedance: an adjunctive technique for maximizing radiofrequency lesion dimensions in deep and intramural ventricular substrate. Circ Arrhythm Electrophysiol. 2020;12(6): e007336.

Article  Google Scholar 

Bennett R, Campbell T, Byth K, et al. Catheter ablation using half-normal saline and dextrose irrigation in an ovine ventricular model. JACC EP. 2021;7(10):1229–39.

Google Scholar 

Debenham R, Tzou WS. Epicardial ablation biophysics and novel radiofrequency energy delivery techniques. Card Electrophysiol Clin. 2020;12(3):401–8.

Article  PubMed  Google Scholar 

Younis A, Zilberman I, Yavin H, et al. Utility and limitations of ablation index for guiding therapy in ventricular myocardium. JACC EP. 2023. https://doi.org/10.1016/j.jacep.2023.03.020.

Article  Google Scholar 

Irastorza RM, Maher T, Barkagan M, et al. Limitations of baseline impedance, impedance drop and current for radiofrequency catheter ablation monitoring: insights from in silico modeling. J Cardiovasc Dev Dis. 2022;9(10):336.

PubMed  PubMed Central  Google Scholar 

Chang RJ, Stevenson WG, Saxon LA, Parker J. Increasing catheter ablation lesion size by simultaneous application of radiofrequency current to two adjacent sites. Am Heart J. 1993;125:1276–84.

Article  CAS  PubMed  Google Scholar 

Iyker V, Gambhir A, Desai SP, et al. Succe

留言 (0)

沒有登入
gif