Alqathama, A. (2020). BRAF in malignant melanoma progression and metastasis: Potentials and challenges. American Journal of Cancer Research, 10(4), 1103–1114.
PubMed PubMed Central Google Scholar
Caksa, S., Baqai, U., & Aplin, A. E. (2022). The future of targeted kinase inhibitors in melanoma. Pharmacology & Therapeutics, 239, 108200. https://doi.org/10.1016/j.pharmthera.2022.108200
Flaherty, K. T., Infante, J. R., Daud, A., Gonzalez, R., Kefford, R. F., Sosman, J., Hamid, O., Schuchter, L., Cebon, J., Ibrahim, N., Kudchadkar, R., Burris, H. A., Falchook, G., Algazi, A., Lewis, K., Long, G. V., Puzanov, I., Lebowitz, P., Singh, A., & Weber, J. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England Journal of Medicine, 367(18), 1694–1703. https://doi.org/10.1056/NEJMoa1210093
Article CAS PubMed PubMed Central Google Scholar
William, W. N., Jr., Feng, L., Ferrarotto, R., Ginsberg, L., Kies, M., Lippman, S., Glisson, B., & Kim, E. S. (2017). Gefitinib for patients with incurable cutaneous squamous cell carcinoma: A single-arm phase II clinical trial. Journal of the American Academy of Dermatology, 77(6), 1110-1113.e1112. https://doi.org/10.1016/j.jaad.2017.07.048
Article CAS PubMed PubMed Central Google Scholar
Sakamoto, K. M., & Frank, D. A. (2009). CREB in the pathophysiology of cancer: Implications for targeting transcription factors for cancer therapy. Clinical Cancer Research, 15(8), 2583–2587. https://doi.org/10.1158/1078-0432.Ccr-08-1137
Article CAS PubMed PubMed Central Google Scholar
Steven, A., Friedrich, M., Jank, P., Heimer, N., Budczies, J., Denkert, C., & Seliger, B. (2020). What turns CREB on? And off? And why does it matter? Cellular and Molecular Life Sciences, 77(20), 4049–4067. https://doi.org/10.1007/s00018-020-03525-8
Article CAS PubMed PubMed Central Google Scholar
Suarez, C. D., Deng, X., & Hu, C. D. (2014). Targeting CREB inhibits radiation-induced neuroendocrine differentiation and increases radiation-induced cell death in prostate cancer cells. American Journal of Cancer Research, 4(6), 850–861.
PubMed PubMed Central Google Scholar
Sapio, L., Salzillo, A., Ragone, A., Illiano, M., Spina, A., & Naviglio, S. (2020). Targeting CREB in cancer therapy: A key candidate or one of many? An Update. Cancers, 12(11), 3166. https://doi.org/10.3390/cancers12113166
Article CAS PubMed Google Scholar
Ahmed, M. B., Alghamdi, A. A. A., Islam, S. U., Lee, J.-S., & Lee, Y.-S. (2022). cAMP signaling in cancer: A PKA-CREB and EPAC-centric approach. Cells, 11(13), 2020. https://doi.org/10.3390/cells11132020
Article CAS PubMed PubMed Central Google Scholar
Services Australia. Medicare Item Reports. Retrieved from http://medicarestatistics.humanservices.gov.au/statistics/mbs_item.jsp. Accessed 20 Jan 2024
Health, A. I. O., & Welfare. (2016). Skin cancer in Australia. https://www.aihw.gov.au/reports/cancer/skin-cancer-in-australia. Accessed 20 Jan 2024
Welfare, A. I. O. H. A. (2023). Cancer data in Australia. https://www.aihw.gov.au/reports/cancer/cancer-data-in-australia/contents/overview-of-cancer-in-australia-2023. Accessed 20 Jan 2024
D’Orazio, J., Jarrett, S., Amaro-Ortiz, A., & Scott, T. (2013). UV Radiation and the Skin. International Journal of Molecular Sciences, 14(6), 12222–12248. https://doi.org/10.3390/ijms140612222
Article CAS PubMed PubMed Central Google Scholar
Dixon, K. M., Norman, A. W., Sequeira, V. B., Mohan, R., Rybchyn, M. S., Reeve, V. E., Halliday, G. M., & Mason, R. S. (2011). 1α,25(OH)2 -vitamin D and a nongenomic vitamin D analogue inhibit ultraviolet radiation-induced skin carcinogenesis. Cancer Prevention Research (Philadelphia, Pa.), 4(9), 1485–1494. https://doi.org/10.1158/1940-6207.Capr-11-0165
Article CAS PubMed Google Scholar
Dickinson, S. E., Olson, E. R., Zhang, J., Cooper, S. J., Melton, T., Criswell, P. J., Casanova, A., Dong, Z., Hu, C., Saboda, K., Jacobs, E. T., Alberts, D. S., & Bowden, G. T. (2011). p38 MAP kinase plays a functional role in UVB-Induced mouse skin carcinogenesis. Molecular Carcinogenesis, 50(6), 469–478. https://doi.org/10.1002/mc.20734
Article CAS PubMed PubMed Central Google Scholar
Choi, M. H., Jo, H. G., Yang, J. H., Ki, S. H., & Shin, H. J. (2018). Antioxidative and Anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis) via PKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19020409
Article PubMed PubMed Central Google Scholar
D’Mello, S. A., Finlay, G. J., Baguley, B. C., & Askarian-Amiri, M. E. (2016). Signaling pathways in melanogenesis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms17071144
Article PubMed PubMed Central Google Scholar
Li, C., Kuai, L., Cui, R., & Miao, X. (2022). Melanogenesis and the targeted therapy of melanoma. Biomolecules. https://doi.org/10.3390/biom12121874
Article PubMed PubMed Central Google Scholar
Rodríguez, C. I., & Setaluri, V. (2014). Cyclic AMP (cAMP) signaling in melanocytes and melanoma. Archives of Biochemistry and Biophysics, 563, 22–27. https://doi.org/10.1016/j.abb.2014.07.003
Article CAS PubMed Google Scholar
Tagashira, H., Miyamoto, A., Kitamura, S.-I., Tsubata, M., Yamaguchi, K., Takagaki, K., & Imokawa, G. (2015). UVB stimulates the expression of endothelin B receptor in human melanocytes via a sequential activation of the p38/MSK1/CREB/MITF pathway which can be interrupted by a french maritime pine bark extract through a direct inactivation of MSK1. PLoS ONE, 10(6), e0128678. https://doi.org/10.1371/journal.pone.0128678
Article CAS PubMed PubMed Central Google Scholar
Nam, G., An, S. K., Park, I.-C., Bae, S., & Lee, J. H. (2022). Daphnetin inhibits α-MSH-induced melanogenesis via PKA and ERK signaling pathways in B16F10 melanoma cells. Bioscience, Biotechnology, and Biochemistry, 86(5), 596–609. https://doi.org/10.1093/bbb/zbac016
Uto, T., Ohta, T., Katayama, K., & Shoyama, Y. (2022). Silibinin promotes melanogenesis through the PKA and p38 MAPK signaling pathways in melanoma cells. Biomedical Research, 43(2), 31–39. https://doi.org/10.2220/biomedres.43.31
Article CAS PubMed Google Scholar
Wu, K. C., Hseu, Y. C., Shih, Y. C., Sivakumar, G., Syu, J. T., Chen, G. L., Lu, M. T., & Chu, P. C. (2022). Calycosin, a Common Dietary Isoflavonoid, Suppresses Melanogenesis through the Downregulation of PKA/CREB and p38 MAPK Signaling Pathways. International Journal of Molecule Science. https://doi.org/10.3390/ijms23031358
Ahn, J. H., Jin, S. H., & Kang, H. Y. (2008). LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Archives of Dermatological Research, 300(6), 325–329. https://doi.org/10.1007/s00403-008-0863-0
Article CAS PubMed Google Scholar
Li, P. H., Liu, L. H., Chang, C. C., Gao, R., Leung, C. H., Ma, D. L., & David Wang, H. M. (2018). Silencing stem cell factor gene in fibroblasts to regulate paracrine factor productions and enhance c-kit expression in melanocytes on melanogenesis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms19051475
Article PubMed PubMed Central Google Scholar
Hachiya, A., Kobayashi, A., Ohuchi, A., Takema, Y., & Imokawa, G. (2001). The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet-B-induced pigmentation. Journal of Investigative Dermatology, 116(4), 578–586. https://doi.org/10.1046/j.1523-1747.2001.01290.x
Article CAS PubMed Google Scholar
Zhang, J., & Bowden, G. T. (2012). Activation of p38 MAP kinase and JNK pathways by UVA irradiation. Photochemical & Photobiological Sciences, 11(1), 54–61. https://doi.org/10.1039/c1pp05133d
Kim, A. L., Labasi, J. M., Zhu, Y., Tang, X., McClure, K., Gabel, C. A., Athar, M., & Bickers, D. R. (2005). Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice. Journal of Investigative Dermatology, 124(6), 1318–1325. https://doi.org/10.1111/j.0022-202X.2005.23747.x
Article CAS PubMed Google Scholar
Syed, D. N., Afaq, F., & Mukhtar, H. (2012). Differential activation of signaling pathways by UVA and UVB radiation in normal human epidermal keratinocytes†. Photochemistry and Photobiology, 88(5), 1184–1190. https://doi.org/10.1111/j.1751-1097.2012.01115.x
Article CAS PubMed PubMed Central Google Scholar
Peus, D., Vasa, R. A., Meves, A., Pott, M., Beyerle, A., Squillace, K., & Pittelkow, M. R. (1998). H2O2 is an important mediator of UVB-induced EGF-receptor phosphorylation in cultured keratinocytes. The Journal of Investigative Dermatology, 110(6), 966–971. https://doi.org/10.1046/j.1523-1747.1998.00210.x
Article CAS PubMed Google Scholar
Peus, D., Vasa, R. A., Beyerle, A., Meves, A., Krautmacher, C., & Pittelkow, M. R. (1999). UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. Journal of Investigative Dermatology, 112(5), 751–756. https://doi.org/10.1046/j.1523-1747.1999.00584.x
Article CAS PubMed Google Scholar
He, Y. Y., Huang, J. L., & Chignell, C. F. (2004). Delayed and sustained activation of extracellular signal-regulated kinase in human keratinocytes by UVA: Implications in carcinogenesis. Journal of Biological Chemistry, 279(51), 53867–53874. https://doi.org/10.1074/jbc.M405781200
Article CAS PubMed Google Scholar
Moan, J., Dahlback, A., & Setlow, R. B. (1999). Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochemistry and Photobiology, 70(2), 243–247.
留言 (0)