The analysis of transcriptomic signature of TNBC—searching for the potential RNA-based predictive biomarkers to determine the chemotherapy sensitivity

Arafah MA, Ouban A, Ameer OZ, Quek KJ (2021) KI-67 LI expression in triple-negative breast cancer patients and its significance, Breast Cancer (Auckl), 15. https://doi.org/10.1177/11782234211016977

Asselain B et al (2018) Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials. Lancet Oncol 19(1):27–39. https://doi.org/10.1016/S1470-2045(17)30777-5

Article  Google Scholar 

Bai X, Ni J, Beretov J, Graham P, Li Y (2021) Triple-negative breast cancer therapeutic resistance: where is the Achilles’ heel? Cancer Lett 497:100–111. https://doi.org/10.1016/J.CANLET.2020.10.016

Article  CAS  PubMed  Google Scholar 

Balkenhol MCA, Vreuls W, Wauters CAP, Mol SJJ, van der Laak JAWM, Bult P (2020) Histological subtypes in triple negative breast cancer are associated with specific information on survival. Ann Diagn Pathol 46:151490. https://doi.org/10.1016/J.ANNDIAGPATH.2020.151490

Article  PubMed  Google Scholar 

Barrón-Gallardo CA et al (2022) Transcriptomic analysis of breast cancer patients sensitive and resistant to chemotherapy: looking for overall survival and drug resistance biomarkers. Technol Cancer Res Treat 21:1–14. https://doi.org/10.1177/15330338211068965

Article  CAS  Google Scholar 

Bartholomae S et al (2016) Coexpression of multiple ABC-transporters is strongly associated with treatment response in childhood acute myeloid leukemia. Pediatr Blood Cancer 63(2):242–247. https://doi.org/10.1002/PBC.25785

Article  CAS  PubMed  Google Scholar 

Blanke KL, Sacco JC, Millikan RC, Olshan AF, Luo J, Trepanier LA (2014) Polymorphisms in the carcinogen detoxification genes CYB5A and CYB5R3 and breast cancer risk in African American women. Cancer Causes Control 25(11):1513–1521. https://doi.org/10.1007/S10552-014-0454-7

Article  PubMed  PubMed Central  Google Scholar 

Breuer EK et al (2019) Potassium channel activity controls breast cancer metastasis by affecting β-catenin signaling, Cell Death Dis, (10):3. https://doi.org/10.1038/S41419-019-1429-0

Brevet M, Haren N, Sevestre H, Merviel P (2009) Ouadid-Ahidouch H, DNA methylation of K(v)1.3 potassium channel gene promoter is associated with poorly differentiated breast adenocarcinoma, Cell Physiol Biochem, (24):1–2, 25–32. https://doi.org/10.1159/000227810

Buchwalter G et al (2013) PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells. Cancer Cell 23(6):753. https://doi.org/10.1016/J.CCR.2013.04.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cao J, Zhang M, Wang B, Zhang L, Fang M, Zhou F (2021) Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical strategies. Front Oncol 11(July):1–11. https://doi.org/10.3389/fonc.2021.658552

Article  CAS  Google Scholar 

Carbognin L et al (2015) Neoadjuvant strategies for triple negative breast cancer: ‘state-of-the-art’ and future perspectives. Anticancer Agents Med Chem 15(1):15–25. https://doi.org/10.2174/1871520614666141019191616

Article  CAS  PubMed  Google Scholar 

Chen X et al (2012) TNBCtype: a subtyping tool for triple-negative breast cancer. Cancer Inform 11:147–156. https://doi.org/10.4137/CIN.S9983

Article  PubMed  PubMed Central  Google Scholar 

Chen F et al (2020) RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer. J Biomed Res 34(2):129–138. https://doi.org/10.7555/JBR.34.20190111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen JW, Dhahbi J (2021) Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods, Sci Rep 2021 11:1, (11):1 1–15. https://doi.org/10.1038/s41598-021-92725-8

Chen Y, Lun ATL, Smyth GK (2016) From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline, F1000Res, (5) https://doi.org/10.12688/F1000RESEARCH.8987.2/DOI

Conley SJ, Bosco EE, Tice DA, Hollingsworth RE, Herbst R, Xiao Z (2016) HER2 drives mucin-like 1 to control proliferation in breast cancer cells, Oncogene (35):32 4225–4234. https://doi.org/10.1038/onc.2015.487

Cortazar P et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. The Lancet 384(9938):164–172. https://doi.org/10.1016/S0140-6736(13)62422-8

Article  Google Scholar 

G. Cserni et al, ( 2021) Triple-negative breast cancer histological subtypes with a favourable prognosis, Cancers (Basel), (13):22. https://doi.org/10.3390/CANCERS13225694

Díez-Itza I, Vizoso F, Merino AM et al (1994) Expression and prognostic significance of apolipoprotein D in breast cancer. Am J Pathol 144(2):310–320

PubMed  PubMed Central  Google Scholar 

Dowsett M et al (2011) Assessment of Ki67 in breast cancer: recommendations from the International Ki67 in Breast Cancer Working Group”. JNCI J Natl Cancer Inst 103(22):1656. https://doi.org/10.1093/JNCI/DJR393

Article  CAS  PubMed  Google Scholar 

Echeverria GV et al (2019) Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state, Sci Transl Med, (11):488. https://doi.org/10.1126/SCITRANSLMED.AAV0936

Eide PW, Bruun J, Lothe RA, Sveen A (2017) CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models, Sci Rep, (7):1. https://doi.org/10.1038/S41598-017-16747-X

Frankish A et al (2021) GENCODE 2021. Nucleic Acids Res 49(D1):D916–D923. https://doi.org/10.1093/NAR/GKAA1087

Article  CAS  PubMed  Google Scholar 

Ghandi M et al (2019) Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569(7757):503–508. https://doi.org/10.1038/S41586-019-1186-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H et al (2022) Cytochrome B5 type A alleviates HCC metastasis via regulating STOML2 related autophagy and promoting sensitivity to ruxolitinib, Cell Death Dis,(13):7. https://doi.org/10.1038/S41419-022-05053-8

Harding C, Osundeko O, Tetlow L, Faragher EB, Howell A, Bundred NJ (2000) Hormonally-regulated proteins in breast secretions are markers of target organ sensitivity. Br J Cancer 82(2):354–360. https://doi.org/10.1054/BJOC.1999.0926

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holanek M et al, (2021) Neoadjuvant chemotherapy of triple-negative breast cancer: evaluation of early clinical response, pathological complete response rates, and addition of platinum salts benefit based on real-world evidence, Cancers (Basel), (13): 7. https://doi.org/10.3390/CANCERS13071586

Hoshida Y (2010) Nearest template prediction: a single-sample-based flexible class prediction with confidence assessment, PLoS One, (5):11. https://doi.org/10.1371/JOURNAL.PONE.0015543

Iorio J et al (2018) hERG1 channel expression associates with molecular subtypes and prognosis in breast cancer. Cancer Cell Int 18(1):93. https://doi.org/10.1186/S12935-018-0592-1

Article  PubMed  PubMed Central  Google Scholar 

Jang SH, Kang KS, Ryu PD, Lee SY (2009) Kv1.3 voltage-gated K(+) channel subunit as a potential diagnostic marker and therapeutic target for breast cancer, BMB Rep, (42):8 535–539. https://doi.org/10.5483/BMBREP.2009.42.8.535

Jankovic-Karasoulos T et al (2020) Elevated levels of tumour apolipoprotein D independently predict poor outcome in breast cancer patients. Histopathology 76(7):976–987. https://doi.org/10.1111/HIS.14081

Article  PubMed  Google Scholar 

Jones ME, Schoemaker MJ, Wright LB, Ashworth A, Swerdlow AJ (2017) Smoking and risk of breast cancer in the Generations Study cohort, Breast Cancer Res, (19):1. https://doi.org/10.1186/S13058-017-0908-4

Khaitan D et al (2009) Role of KCNMA1 gene in breast cancer invasion and metastasis to brain. BMC Cancer 9:258. https://doi.org/10.1186/1471-2407-9-258

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ko JH, Ko EA, Gu W, Lim I, Bang H, Zhou T (2013) Expression profiling of ion channel genes predicts clinical outcome in breast cancer. Mol Cancer 12(1):106. https://doi.org/10.1186/1476-4598-12-106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lansu K, Gentile S (2013) Potassium channel activation inhibits proliferation of breast cancer cells by activating a senescence program. Cell Death Dis 4(6):e652. https://doi.org/10.1038/CDDIS.2013.174

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lastraioli E (2020) Focus on triple-negative breast cancer: potassium channel expression and clinical correlates, Front Pharmacol, (11). https://doi.org/10.3389/FPHAR.2020.00725

Lee J (2023) Current treatment landscape for early triple-negative breast cancer (TNBC), J Clin Med, (12): 4 1524. https://doi.org/10.3390/JCM12041524

Lehmann BD et al (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 121(7):2750–2767. https://doi.org/10.1172/JCI45014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Xiong ZG (2011) Ion channels as targets for cancer therapy. Int J Physiol Pathophysiol Pharmacol 3(2):156

CAS  PubMed  PubMed Central  Google Scholar 

Li QH et al (2020) Small breast epithelial mucin promotes the invasion and metastasis of breast cancer cells via promoting epithelial-to-mesenchymal transition. Oncol Rep 44(2):509–518. https://doi.org/10.3892/OR.2020.7640

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li D, Liu Z, Ding X, Qin Z (2021) AEBP1 is one of the epithelial-mesenchymal transition regulatory genes in colon adenocarcinoma, Biomed Res Int, (2021). https://doi.org/10.1155/2021/3108933

Liu ZZ, Xie XD, Qu SX, Zheng ZD, Wang YK (2010) Small breast epithelial mucin (SBEM) has the potential to be a marker for predicting hematogenous micrometastasis and response to neoadjuvant chemotherapy in breast cancer. Clin Exp Metastasis 27(4):251–259. https://doi.org/10.1007/S10585-010-9323-2

Article  CAS  PubMed  Google Scholar 

Liu J et al (2018) An integrated TCGA Pan-Cancer Clinical Data Resource to drive high-quality survival outcome analytics. Cell 173(2):400-416.e11. https://doi.org/10.1016/J.CELL.2018.02.052

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu K et al (2019) ARHGEF38 as a novel biomarker to predict aggressive prostate cancer. Genes Dis 7(2):217–224. https://doi.org/10.1016/J.GENDIS.2019.03.004

Article  PubMed  PubMed Central  Google Scholar 

Lüönd F, Tiede S, Christofori G (2021) Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. Br J Cancer 125(2):164–175. https://doi.org/10.1038/S41416-021-01328-7

Article  PubMed  PubMed Central  Google Scholar 

Mano R et al (2022) Induction of potassium channel regulator KCNE4 in a submandibular lymph node metastasis model, Sci Rep, (12):1.

留言 (0)

沒有登入
gif