Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors

Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev. 2012;6(1):e8. https://doi.org/10.4081/oncol.2012.e8.

Article  PubMed  PubMed Central  Google Scholar 

Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312. https://doi.org/10.1038/s41375-018-0357-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586–95. https://doi.org/10.1038/leu.2014.55.

Article  CAS  PubMed  Google Scholar 

Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36. https://doi.org/10.1186/1756-8722-4-36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Tecik M, Adan A. Therapeutic targeting of FLT3 in acute myeloid leukemia: current status and novel approaches. Onco Targets Ther. 2022;15:1449–78. https://doi.org/10.2147/ott.S384293. Reference 5 is a comprehensive study explaining all clinically FLT3 inhibitors and novel therapeutics targeting FLT3 in detail.

Article  PubMed  PubMed Central  Google Scholar 

Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci U S A. 1994;91(2):459–63. https://doi.org/10.1073/pnas.91.2.459.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leick MB, Levis MJ. The Future of Targeting FLT3 Activation in AML. Curr Hematol Malig Rep. 2017;12(3):153–67. https://doi.org/10.1007/s11899-017-0381-2.

Article  PubMed  Google Scholar 

Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020;111(2):312–22. https://doi.org/10.1111/cas.14274.

Article  CAS  PubMed  Google Scholar 

• Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021;11(5):104. https://doi.org/10.1038/s41408-021-00495-3. Reference 9 represent updated review of treatment options specifically for FLT3-mutated AML in 2021, focusing on the MD Anderson approach.

Article  PubMed  PubMed Central  Google Scholar 

Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia. 2020;34(3):682–96. https://doi.org/10.1038/s41375-019-06. This refers to a recently updated review of treatment optionsspecifically for FLT3-mutated AML in 2021, highlighting theMD Anderson approach.4-3.

Article  PubMed  Google Scholar 

Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, et al. FLT3 inhibitors in acute myeloid leukemia: challenges and recent developments in overcoming resistance. J Med Chem. 2021;64(6):2878–900. https://doi.org/10.1021/acs.jmedchem.0c01851.

Article  CAS  PubMed  Google Scholar 

Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153(1):38–55. https://doi.org/10.1016/j.cell.2013.03.008.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4(1):62. https://doi.org/10.1038/s41392-019-0095-0.

Article  PubMed  PubMed Central  Google Scholar 

Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127(1):42–52. https://doi.org/10.1182/blood-2015-07-604512.

Article  CAS  PubMed  Google Scholar 

Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8. https://doi.org/10.1038/nature05913.

Article  CAS  PubMed  Google Scholar 

Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol. 2005;23(17):3971–93. https://doi.org/10.1200/jco.2005.16.600.

Article  CAS  PubMed  Google Scholar 

Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. https://doi.org/10.1056/NEJMoa1301689.

Article  CAS  PubMed  Google Scholar 

Rosnet O, Schiff C, Pébusque MJ, Marchetto S, Tonnelle C, Toiron Y, et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood. 1993;82(4):1110–9.

Article  CAS  PubMed  Google Scholar 

Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532–42. https://doi.org/10.1182/blood-2002-02-0492.

Article  CAS  PubMed  Google Scholar 

Tsapogas P, Mooney CJ, Brown G, Rolink A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int J Mol Sci. 2017; 18(6). https://doi.org/10.3390/ijms18061115

Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994;368(6472):643–8. https://doi.org/10.1038/368643a0.

Article  CAS  PubMed  Google Scholar 

Zhao JC, Agarwal S, Ahmad H, Amin K, Bewersdorf JP, Zeidan AM. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev. 2022;52:100905. https://doi.org/10.1016/j.blre.2021.100905.

Article  CAS  PubMed  Google Scholar 

Dosil M, Wang S, Lemischka IR. Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol. 1993;13(10):6572–85. https://doi.org/10.1128/mcb.13.10.6572-6585.1993.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.

CAS  PubMed  Google Scholar 

Janke H, Pastore F, Schumacher D, Herold T, Hopfner KP, Schneider S, et al. Activating FLT3 mutants show distinct gain-of-function phenotypes in vitro and a characteristic signaling pathway profile associated with prognosis in acute myeloid leukemia. PLoS ONE. 2014;9(3):e89560. https://doi.org/10.1371/journal.pone.0089560.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schnittger S, Bacher U, Haferlach C, Alpermann T, Kern W, Haferlach T. Diversity of the juxtamembrane and TKD1 mutations (exons 13–15) in the FLT3 gene with regards to mutant load, sequence, length, localization, and correlation with biological data. Genes Chromosomes Cancer. 2012;51(10):910–24. https://doi.org/10.1002/gcc.21975.

Article  CAS  PubMed  Google Scholar 

Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2018;59(10):2273–86. https://doi.org/10.1080/10428194.2017.1399312.

Article  CAS  PubMed  Google Scholar 

Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–9. https://doi.org/10.1182/blood.v97.8.2434.

Article  CAS  PubMed  Google Scholar 

Rottapel R, Turck CW, Casteran N, Liu X, Birnbaum D, Pawson T, et al. Substrate specificities and identification of a putative binding site for PI3K in the carboxy tail of the murine Flt3 receptor tyrosine kinase. Oncogene. 1994;9(6):1755–65.

CAS  PubMed  Google Scholar 

Heiss E, Masson K, Sundberg C, Pedersen M, Sun J, Bengtsson S, et al. Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2. Blood. 2006;108(5):1542–50. https://doi.org/10.1182/blood-2005-07-008896.

Article  CAS  PubMed  Google Scholar 

Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med. 2000;192(5):719–28. https://doi.org/10.1084/jem.192.5.719.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Broxmeyer HE. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun. 2000;277(1):195–9. https://doi.org/10.1006/bbrc.2000.3662.

Article  CAS  PubMed  Google Scholar 

Zhang S, Mantel C, Broxmeyer HE. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol. 1999;65(3):372–80. https://doi.org/10.1002/jlb.65.3.372.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif