Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev. 2012;6(1):e8. https://doi.org/10.4081/oncol.2012.e8.
Article PubMed PubMed Central Google Scholar
Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312. https://doi.org/10.1038/s41375-018-0357-9.
Article CAS PubMed PubMed Central Google Scholar
Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28(8):1586–95. https://doi.org/10.1038/leu.2014.55.
Article CAS PubMed Google Scholar
Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36. https://doi.org/10.1186/1756-8722-4-36.
Article CAS PubMed PubMed Central Google Scholar
• Tecik M, Adan A. Therapeutic targeting of FLT3 in acute myeloid leukemia: current status and novel approaches. Onco Targets Ther. 2022;15:1449–78. https://doi.org/10.2147/ott.S384293. Reference 5 is a comprehensive study explaining all clinically FLT3 inhibitors and novel therapeutics targeting FLT3 in detail.
Article PubMed PubMed Central Google Scholar
Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci U S A. 1994;91(2):459–63. https://doi.org/10.1073/pnas.91.2.459.
Article CAS PubMed PubMed Central Google Scholar
Leick MB, Levis MJ. The Future of Targeting FLT3 Activation in AML. Curr Hematol Malig Rep. 2017;12(3):153–67. https://doi.org/10.1007/s11899-017-0381-2.
Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development. Cancer Sci. 2020;111(2):312–22. https://doi.org/10.1111/cas.14274.
Article CAS PubMed Google Scholar
• Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021;11(5):104. https://doi.org/10.1038/s41408-021-00495-3. Reference 9 represent updated review of treatment options specifically for FLT3-mutated AML in 2021, focusing on the MD Anderson approach.
Article PubMed PubMed Central Google Scholar
Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia. 2020;34(3):682–96. https://doi.org/10.1038/s41375-019-06. This refers to a recently updated review of treatment optionsspecifically for FLT3-mutated AML in 2021, highlighting theMD Anderson approach.4-3.
Wang Z, Cai J, Cheng J, Yang W, Zhu Y, Li H, et al. FLT3 inhibitors in acute myeloid leukemia: challenges and recent developments in overcoming resistance. J Med Chem. 2021;64(6):2878–900. https://doi.org/10.1021/acs.jmedchem.0c01851.
Article CAS PubMed Google Scholar
Shen H, Laird PW. Interplay between the cancer genome and epigenome. Cell. 2013;153(1):38–55. https://doi.org/10.1016/j.cell.2013.03.008.
Article CAS PubMed PubMed Central Google Scholar
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019;4(1):62. https://doi.org/10.1038/s41392-019-0095-0.
Article PubMed PubMed Central Google Scholar
Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia. Blood. 2016;127(1):42–52. https://doi.org/10.1182/blood-2015-07-604512.
Article CAS PubMed Google Scholar
Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396–8. https://doi.org/10.1038/nature05913.
Article CAS PubMed Google Scholar
Bhalla KN. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol. 2005;23(17):3971–93. https://doi.org/10.1200/jco.2005.16.600.
Article CAS PubMed Google Scholar
Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. https://doi.org/10.1056/NEJMoa1301689.
Article CAS PubMed Google Scholar
Rosnet O, Schiff C, Pébusque MJ, Marchetto S, Tonnelle C, Toiron Y, et al. Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood. 1993;82(4):1110–9.
Article CAS PubMed Google Scholar
Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532–42. https://doi.org/10.1182/blood-2002-02-0492.
Article CAS PubMed Google Scholar
Tsapogas P, Mooney CJ, Brown G, Rolink A. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int J Mol Sci. 2017; 18(6). https://doi.org/10.3390/ijms18061115
Hannum C, Culpepper J, Campbell D, McClanahan T, Zurawski S, Bazan JF, et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994;368(6472):643–8. https://doi.org/10.1038/368643a0.
Article CAS PubMed Google Scholar
Zhao JC, Agarwal S, Ahmad H, Amin K, Bewersdorf JP, Zeidan AM. A review of FLT3 inhibitors in acute myeloid leukemia. Blood Rev. 2022;52:100905. https://doi.org/10.1016/j.blre.2021.100905.
Article CAS PubMed Google Scholar
Dosil M, Wang S, Lemischka IR. Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol. 1993;13(10):6572–85. https://doi.org/10.1128/mcb.13.10.6572-6585.1993.
Article CAS PubMed PubMed Central Google Scholar
Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, et al. Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996;10(12):1911–8.
Janke H, Pastore F, Schumacher D, Herold T, Hopfner KP, Schneider S, et al. Activating FLT3 mutants show distinct gain-of-function phenotypes in vitro and a characteristic signaling pathway profile associated with prognosis in acute myeloid leukemia. PLoS ONE. 2014;9(3):e89560. https://doi.org/10.1371/journal.pone.0089560.
Article CAS PubMed PubMed Central Google Scholar
Schnittger S, Bacher U, Haferlach C, Alpermann T, Kern W, Haferlach T. Diversity of the juxtamembrane and TKD1 mutations (exons 13–15) in the FLT3 gene with regards to mutant load, sequence, length, localization, and correlation with biological data. Genes Chromosomes Cancer. 2012;51(10):910–24. https://doi.org/10.1002/gcc.21975.
Article CAS PubMed Google Scholar
Patnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2018;59(10):2273–86. https://doi.org/10.1080/10428194.2017.1399312.
Article CAS PubMed Google Scholar
Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001;97(8):2434–9. https://doi.org/10.1182/blood.v97.8.2434.
Article CAS PubMed Google Scholar
Rottapel R, Turck CW, Casteran N, Liu X, Birnbaum D, Pawson T, et al. Substrate specificities and identification of a putative binding site for PI3K in the carboxy tail of the murine Flt3 receptor tyrosine kinase. Oncogene. 1994;9(6):1755–65.
Heiss E, Masson K, Sundberg C, Pedersen M, Sun J, Bengtsson S, et al. Identification of Y589 and Y599 in the juxtamembrane domain of Flt3 as ligand-induced autophosphorylation sites involved in binding of Src family kinases and the protein tyrosine phosphatase SHP2. Blood. 2006;108(5):1542–50. https://doi.org/10.1182/blood-2005-07-008896.
Article CAS PubMed Google Scholar
Zhang S, Fukuda S, Lee Y, Hangoc G, Cooper S, Spolski R, et al. Essential role of signal transducer and activator of transcription (Stat)5a but not Stat5b for Flt3-dependent signaling. J Exp Med. 2000;192(5):719–28. https://doi.org/10.1084/jem.192.5.719.
Article CAS PubMed PubMed Central Google Scholar
Zhang S, Broxmeyer HE. Flt3 ligand induces tyrosine phosphorylation of gab1 and gab2 and their association with shp-2, grb2, and PI3 kinase. Biochem Biophys Res Commun. 2000;277(1):195–9. https://doi.org/10.1006/bbrc.2000.3662.
Article CAS PubMed Google Scholar
Zhang S, Mantel C, Broxmeyer HE. Flt3 signaling involves tyrosyl-phosphorylation of SHP-2 and SHIP and their association with Grb2 and Shc in Baf3/Flt3 cells. J Leukoc Biol. 1999;65(3):372–80. https://doi.org/10.1002/jlb.65.3.372.
留言 (0)