The Effects of FABP4 on Cardiovascular Disease in the Aging Population

Waife SO. Recent advances in the study of arteriosclerosis. Ann Intern Med. 1949;30:635–45.

Article  CAS  PubMed  Google Scholar 

van Oostrom O, Velema E, Schoneveld AH, et al. Age-related changes in plaque composition: a study in patients suffering from carotid artery stenosis. Cardiovasc Pathol. 2005;14:126–34.

Article  PubMed  Google Scholar 

Chvapil M, Stith PL, Tillema LM, Carlson EC, Campbell JB, Eskelson CD. Early changes in the arterial wall of chickens fed a cholesterol diet. Atherosclerosis. 1976;24:393–405.

Article  CAS  PubMed  Google Scholar 

Bierman EL, Albers JJ, Chait A. Effect of donor age on the binding and degradation of low density lipoproteins by cultured human arterial smooth muscle cells. J Gerontol. 1979;34:483–8.

Article  CAS  PubMed  Google Scholar 

Chajara A, Delpech B, Courel M-N, Leroy M, Basuyau J-P, Lévesque H. Effect of aging on neointima formation and hyaluronan, hyaluronidase and hyaluronectin production in injured rat aorta. Atherosclerosis. 1998;138:53–64.

Article  CAS  PubMed  Google Scholar 

Wibowo TA, Gaskins CT, Newberry RC, Thorgaard GH, Michal JJ, Jiang Z. Genome assembly anchored QTL map of bovine chromosome 14. Int J Biol Sci. 2008;4:406–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen-Zinder M, Lipkin E, Shor-Shimoni E, Ben-Meir Y, Agmon R, Asher A, Miron J, Shabtay A. FABP4gene has a very large effect on feed efficiency in lactating Israeli Holstein cows. Physiol Genomics. 2019;51:481–7.

Article  CAS  PubMed  Google Scholar 

Zhou H, Cheng L, Azimu W, Hodge S, Edwards GR, Hickford JGH. Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows. Sci Rep. 2015.

Li Y, Zhou H, Cheng L, Hodge M, Zhao J, Tung R, Edwards G, Hickford J. Effects of FABP4 variation on milk fatty-acid composition for dairy cattle grazed on pasture in late lactation. J Dairy Res. 2020;87:32–6.

Article  CAS  PubMed  Google Scholar 

Storch J, McDermott L. Structural and functional analysis of fatty acid-binding proteins. J Lipid Res. 2009;50(Suppl):S126–31.

Article  PubMed  PubMed Central  Google Scholar 

Hotamisligil GS, Bernlohr DA. Metabolic functions of FABPs–mechanisms and therapeutic implications. Nat Rev Endocrinol. 2015;11:592–605.

Article  CAS  PubMed  PubMed Central  Google Scholar 

• Li B, Hao J, Zeng J, Sauter ER. SnapShot: FABP Functions. Cell. 2020;182:1066-1066.e1. (If you want a quick rundown of what is known about FABPs, this is a good springboard.)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smathers RL, Petersen DR. The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics. 2011;5:170–91.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Y, Luo N, Lopes-Virella MF, Garvey WT. The adipocyte lipid binding protein (ALBP/aP2) gene facilitates foam cell formation in human THP-1 macrophages. Atherosclerosis. 2002;165:259–69.

Article  CAS  PubMed  Google Scholar 

Coe NR, Simpson MA, Bernlohr DA. Targeted disruption of the adipocyte lipid-binding protein (aP2 protein) gene impairs fat cell lipolysis and increases cellular fatty acid levels. J Lipid Res. 1999;40:967–72.

Article  CAS  PubMed  Google Scholar 

Sha RS, Kane CD, Xu Z, Banaszak LJ, Bernlohr DA. Modulation of ligand binding affinity of the adipocyte lipid-binding protein by selective mutation. Analysis in vitro and in situ. J Biol Chem. 1993;268:7885–92.

Article  CAS  PubMed  Google Scholar 

Xu H, Diolintzi A, Storch J. Fatty acid-binding proteins. Curr Opin Clin Nutr Metab Care. 2019;22:407–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillilan RE, Ayers SD, Noy N. Structural basis for activation of fatty acid-binding protein 4. J Mol Biol. 2007;372:1246–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J Atheroscler Thromb. 2019;26:216–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yilmaz AB, Tapsin S, Elbasan EB, Kayhan HD, Sahin F, Turkel N. Suppressor effects of sodium pentaborate pentahydrate and pluronic F68 on adipogenic differentiation and fat accumulation. Biol Trace Elem Res. 2020;193:390–9.

Article  CAS  PubMed  Google Scholar 

Xu L, Zhang H, Wang Y, Yang A, Dong X, Gu L, Liu D, Ding N, Jiang Y. FABP4 activates the JAK2/STAT2 pathway via Rap1a in the homocysteine-induced macrophage inflammatory response in ApoE-/- mice atherosclerosis. Lab Invest. 2022;102:25–37.

Article  CAS  PubMed  Google Scholar 

Navarro-Ruiz MDC, López-Alcalá J, Díaz-Ruiz A, Moral SDD, Tercero-Alcázar C, Nieto-Calonge A, López-Miranda J, Tinahones FJ, Malagón MM, Guzmán-Ruiz R. Understanding the adipose tissue acetylome in obesity and insulin resistance. Transl Res. 2022;246:15–32.

Article  CAS  PubMed  Google Scholar 

Goto K, Iso T, Hanaoka H, et al. Peroxisome proliferator-activated receptor-γ in capillary endothelia promotes fatty acid uptake by heart during long-term fasting. J Am Heart Assoc. 2013;2:e004861.

Article  PubMed  PubMed Central  Google Scholar 

Harjes U, Bridges E, McIntyre A, Fielding BA, Harris AL. Fatty acid-binding protein 4, a point of convergence for angiogenic and metabolic signaling pathways in endothelial cells. J Biol Chem. 2014;289:23168–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuseya T, Furuhashi M, Matsumoto M, Watanabe Y, Hoshina K, Mita T, Ishimura S, Tanaka M, Miura T. Ectopic fatty acid-binding protein 4 expression in the vascular endothelium is involved in neointima formation after vascular injury. J Am Heart Assoc. 2017.

Wu Y-W, Chang T-T, Chang C-C, Chen J-W. Fatty-acid-binding protein 4 as a novel contributor to mononuclear cell activation and endothelial cell dysfunction in atherosclerosis. Int J Mol Sci. 2020. 

Matsuura E, Hughes GR, Khamashta MA. Oxidation of LDL and its clinical implication. Autoimmun Rev. 2008;7:558–66.

Article  CAS  PubMed  Google Scholar 

Hui X, Li H, Zhou Z, Lam KSL, Xiao Y, Wu D, Ding K, Wang Y, Vanhoutte PM, Xu A. Adipocyte fatty acid-binding protein modulates inflammatory responses in macrophages through a positive feedback loop involving c-Jun NH 2-terminal kinases and activator protein-1. J Biol Chem. 2010;285:10273–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity: macrophage expression of aP2 impacts peroxisome proliferator-activated receptor γ and IκB kinase activities. J Biol Chem. 2005;280:12888–95.

Article  CAS  PubMed  Google Scholar 

Boss M, Kemmerer M, Brüne B, Namgaladze D. FABP4 inhibition suppresses PPARγ activity and VLDL-induced foam cell formation in IL-4-polarized human macrophages. Atherosclerosis. 2015;240:424–30.

Article  CAS  PubMed  Google Scholar 

Xu H, Hertzel AV, Steen KA, Bernlohr DA. Loss of fatty acid binding protein 4/aP2 reduces macrophage inflammation through activation of SIRT3. Mol Endocrinol. 2016;30:325–34.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohira H, Fujioka Y, Katagiri C, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb. 2013;20:425–42.

Article  CAS  PubMed  Google Scholar 

Lázaro I, Ferré R, Masana L, Cabré A. Akt and ERK/Nrf2 activation by PUFA oxidation-derived aldehydes upregulates FABP4 expression in human macrophages. Atherosclerosis. 2013;230:216–22.

Article  PubMed  Google Scholar 

Lee C-H, Lui DTW, Lam KSL. Adipocyte fatty acid-binding protein, cardiovascular diseases and mortality. Front Immunol. 2021;12:589206.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang Y, Ma S, Zhang H, et al. FABP4-mediated homocysteine-induced cholesterol accumulation in THP-1 monocyte-derived macrophages and the potential epigenetic mechanism. Mol Med Rep. 2016;14:969–76.

Article  CAS  PubMed  Google Scholar 

Ren Q, Xie X, Zhao C, Wen Q, Pan R, Du Y. 2,2’,4,4’-Tetrabromodiphenyl ether (PBDE 47) selectively stimulates proatherogenic PPARγ signatures in human THP-1 macrophages to contribute to foam cell formation. Chem Res Toxicol. 2022;35:1023–35.

Article  CAS  PubMed  Google Scholar 

Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL, Silverstein RL. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006;4:211–21.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif