Arrildt KT, LaBranche CC, Joseph SB, Dukhovlinova EN, Graham WD, Ping LH, Schnell G, Sturdevant CB, Kincer LP, Mallewa M, Heyderman RS, Van Rie A, Cohen MS, Spudich S, Price RW, Montefiori DC, Swanstrom R (2015) Phenotypic correlates of HIV-1 macrophage tropism. J Virol 89:11294–11311. https://doi.org/10.1128/jvi.00946-15
Article CAS PubMed PubMed Central Google Scholar
Bai F, Iannuzzi F, Merlini E, Borghi L, Tincati C, Trunfio M, Bini T, d’Arminio Monforte A, Marchetti G (2017) Clinical and viro-immunological correlates of HIV associated neurocognitive disorders (HAND) in a cohort of antiretroviral-naïve HIV-infected patients. AIDS 31:311–314. https://doi.org/10.1097/QAD.0000000000001346
Article CAS PubMed Google Scholar
Bednar MM, Sturdevant CB, Tompkins LA, Arrildt KT, Dukhovlinova E, Kincer LP, Swanstrom R (2015) Compartmentalization, viral evolution, and viral latency of HIV in the CNS. Curr HIV/AIDS Rep 12:262–271. https://doi.org/10.1007/s11904-015-0265-9
Article PubMed PubMed Central Google Scholar
Boom R, Sol JA, Salimans MMM, Jansen CL, Wertheim-Van Dillen PME, Van Der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503
Article CAS PubMed PubMed Central Google Scholar
Borrajo A, Svicher V, Salpini R, Pellegrino M, Aquaro S (2021) Crucial role of central nervous system as a viral anatomical compartment for hiv-1 infection. Microorganisms 9:2537. https://doi.org/10.3390/microorganisms9122537
Article CAS PubMed PubMed Central Google Scholar
Brese RL, Gonzalez-Perez MP, Koch M, O’Connell O, Luzuriaga K, Somasundaran M, Clapham PR, Dollar JJ, Nolan DJ, Rose R, Lamers SL (2018) Ultradeep single-molecule real-time sequencing of HIV envelope reveals complete compartmentalization of highly macrophage-tropic R5 proviral variants in brain and CXCR4-using variants in immune and peripheral tissues. J Neurovirol 24:439–453. https://doi.org/10.1007/s13365-018-0633-5
Article CAS PubMed PubMed Central Google Scholar
Chan P, Spudich S (2022) HIV compartmentalization in the CNS and its impact in treatment outcomes and cure strategies. Curr HIV/AIDS Rep 19:207–216. https://doi.org/10.1007/s11904-022-00605-1
Article PubMed PubMed Central Google Scholar
Clifford DB, Ances BM (2013) HIV-associated neurocognitive disorder. Lancet Infect Dis 13:976–986
Article PubMed PubMed Central Google Scholar
Duenas-Decamp MJ, Peters PJ, Burton D, Clapham PR (2009) Determinants flanking the CD4 binding Loop modulate macrophage tropism of human immunodeficiency virus type 1 R5 envelopes. J Virol 83:2575–2583. https://doi.org/10.1128/jvi.02133-08
Article CAS PubMed PubMed Central Google Scholar
Dunfee RL, Thomas ER, Gorry PR, Wang J, Taylor J, Kunstman K, Wolinsky SM, Gabuzda D (2006) The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. PNAS 103:15160–15165
Article CAS PubMed PubMed Central Google Scholar
Dunfee RL, Thomas ER, Wang J, Kunstman K, Wolinsky SM, Gabuzda D (2007) Loss of the N-linked glycosylation site at position 386 in the HIV envelope V4 region enhances macrophage tropism and is associated with dementia. Virology 367:222–234. https://doi.org/10.1016/j.virol.2007.05.029
Article CAS PubMed Google Scholar
Gartner S, Markovits P, Markovitz DM, Kaplan MH (1986) The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219. https://doi.org/10.1126/science.3014648
Article CAS PubMed Google Scholar
Gonzalez-Perez MP, O’Connell O, Lin R, Sullivan WM, Bell J, Simmonds P, Clapham PR (2012) Independent evolution of macrophage-tropism and increased charge between HIV-1 R5 envelopes present in brain and immune tissue. Retrovirology 9:20. https://doi.org/10.1186/1742-4690-9-20
Article CAS PubMed PubMed Central Google Scholar
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M (2022) Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 28:64–91. https://doi.org/10.1007/s13365-021-01049-w
Article CAS PubMed PubMed Central Google Scholar
Han M, Cantaloube-Ferrieu V, Xie M, Armani-Tourret M, Woottum M, Pagès JC, Colin P, Lagane B, Benichou S (2022) HIV-1 cell-to-cell spread overcomes the virus entry block of non-macrophage-tropic strains in macrophages. PLoS Pathog 18(5):e1010335. https://doi.org/10.1371/journal.ppat.1010335
Article CAS PubMed PubMed Central Google Scholar
Heaton RK, Clifford DB, Franklin DR, Woods BSP, Ake PC, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, Mcarthur JC, Morgello MS, Simpson DM, Grant I (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER Study. Neurology 75:2087–2096
Article CAS PubMed PubMed Central Google Scholar
Hudson RR (2000) A New Statistic for detecting genetic differentiation. Genetics 155:2011–2014
Article CAS PubMed PubMed Central Google Scholar
Hudson RR, Slatkint M, Maddison WP (1992) Estimation of levels of Gene Flow from DNA sequence data. Genetics 132:583–589
Article CAS PubMed PubMed Central Google Scholar
Jadhav S, Nema V (2021) HIV-Associated neurotoxicity: the interplay of host and viral proteins. Mediators Inflamm. https://doi.org/10.1155/2021/1267041
Article PubMed PubMed Central Google Scholar
Joseph SB, Swanstrom R (2018) The evolution of HIV-1 entry phenotypes as a guide to changing target cells. J Leukoc Biol 103:421–431. https://doi.org/10.1002/JLB.2RI0517-200R
Article CAS PubMed Google Scholar
Joseph SB, Arrildt KT, Swanstrom AE, Schnell G, Lee B, Hoxie JA, Swanstrom R (2014) Quantification of Entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J Virol 88:1858–1869. https://doi.org/10.1128/jvi.02477-13
Article PubMed PubMed Central Google Scholar
Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R (2015) HIV-1 target cells in the CNS. J Neurovirol 21:276–289. https://doi.org/10.1007/s13365-014-0287-x
Article CAS PubMed Google Scholar
Katoh K, Rozewicki J, Yamada KD (2018) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. https://doi.org/10.1093/bib/bbx108
Ko A, Kang G, Hattler JB, Galadima HI, Zhang J, Li Q, Kim WK (2019) Macrophages but not astrocytes Harbor HIV DNA in the brains of HIV-1-Infected aviremic individuals on suppressive antiretroviral therapy. J Neuroimmune Pharmacol 14:110–119. https://doi.org/10.1007/s11481-018-9809-2
Kosakovsky Pond SL, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676–679. https://doi.org/10.1093/bioinformatics/bti079
Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, Salemi M, Garcia DL, Bracci P, Yong W, Commins D, Said J, Khanlou N, Hinkin CH, Sueiras MV, Mathisen G, Donovan S, Shiramizu B, Stoddart CA, Singer EJ (2016) HIV DNA is frequently present within Pathologic Tissues Evaluated at autopsy from combined antiretroviral therapy-treated patients with undetectable viral loads. J Virol 90:8968–8983. https://doi.org/10.1128/jvi.00674-16
Article CAS PubMed PubMed Central Google Scholar
Li Y, Kappes JC, Conway JA, Price RW, Shaw GM, Hahn BH (1991) Molecular characterization of human immunodeficiency virus type 1 cloned directly from uncultured human brain tissue: identification of replication-competent and-defective viral genomes. J Virol 65:3973–3985
Article CAS PubMed PubMed Central Google Scholar
López-Huertas MR, Jiménez-Tormo L, Madrid-Elena N, Gutiérrez C, Vivancos MJ, Luna L, Moreno S (2020) Maraviroc reactivates HIV with potency similar to that of other latency reversing drugs without inducing toxicity in CD8 T cells. Biochem Pharmacol 182:114231. https://doi.org/10.1016/j.bcp.2020.114231
Article CAS PubMed Google Scholar
Madrid-Elena N, Laura García-Bermejo M, Serrano-Villar S, Díaz-De Santiago A, Sastre B, Gutiérrez C, Dronda F, Díaz MC, Domínguez E, Rosa López-Huertas M, Hernández-Novoa B, Moreno S (2018) Maraviroc is Associated with latent HIV-1 reactivation through NF-B activation in resting CD4 T cells from HIV-Infected individuals on suppressive antiretroviral therapy. J Virol 92:e01931–e01917. https://doi.org/10.1128/JVI.01931-17
Article CAS PubMed PubMed Central Google Scholar
Mattei D, Ivanov A, van Oostrum M, Pantelyushin S, Richetto J, Mueller F, Beffinger M, Schellhammer L, vom Berg J, Wollscheid B, Beule D, Paolicelli RC, Meyer U (2020) Enzymatic dissociation induces transcriptional and proteotype bias in brain cell populations. Int J Mol Sci 21:1–20. https://doi.org/10.3390/ijms21217944
Musich T, Peters PJ, Duenas-Decamp MJ, Gonzalez-Perez MP, Robinson J, Zolla-Pazner S, Ball JK, Luzuriaga K, Clapham PR (2011) A conserved determinant in the V1 Loop of HIV-1 modulates the V3 Loop to Prime low CD4 use and macrophage infection. J Virol 85:2397–2405. https://doi.org/10.1128/jvi.02187-10
留言 (0)