The activation of P38MAPK Signaling Pathway Impedes the Delivery of the Cx43 to the Intercalated Discs During Cardiac Ischemia–Reperfusion Injury

Moran AE, Forouzanfar MH, Roth GA, et al. The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease 2010 study. Circulation. 2014;129:1493–501. https://doi.org/10.1161/circulationaha.113.004046.

Article  PubMed  PubMed Central  Google Scholar 

Davidson SM, Ferdinandy P, Andreadou I, et al. Multitarget Strategies to Reduce Myocardial Ischemia/Reperfusion Injury: JACC Review Topic of the Week. J Am Coll Cardiol. 2019;73:89–99. https://doi.org/10.1016/j.jacc.2018.09.086.

Article  PubMed  Google Scholar 

Yi J, Duan H, Chen K, et al. Cardiac Electrophysiological Changes and Downregulated Connexin 43 Prompts Reperfusion Arrhythmias Induced by Hypothermic Ischemia-Reperfusion Injury in Isolated Rat Hearts. J Cardiovasc Transl Res. 2022;15:1464–73. https://doi.org/10.1007/s12265-022-10256-7.

Article  PubMed  Google Scholar 

Li W, Gao H, Gao J, et al. Upregulation of MMP-9 and CaMKII prompts cardiac electrophysiological changes that predispose denervated transplanted hearts to arrhythmogenesis after prolonged cold ischemic storage. Biomed Pharmacother. 2019;112:108641. https://doi.org/10.1016/j.biopha.2019.108641.

Article  CAS  PubMed  Google Scholar 

Boengler K, Schulz R. Connexin 43 and Mitochondria in Cardiovascular Health and Disease. Exp Biol Med. 2017;982:227–46. https://doi.org/10.1007/978-3-319-55330-6_12.

Article  CAS  Google Scholar 

Leybaert L, Lampe PD, Dhein S, et al. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev. 2017;69:396–478. https://doi.org/10.1124/pr.115.012062.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akar FG, Nass RD, Hahn S, et al. Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. Am J Physiol Heart Circ Physiol. 2007;293:H1223–30. https://doi.org/10.1152/ajpheart.00079.2007.

Article  CAS  PubMed  Google Scholar 

Beardslee MA, Lerner DL, Tadros PN, et al. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res. 2000;87:656–62. https://doi.org/10.1161/01.res.87.8.656.

Article  CAS  PubMed  Google Scholar 

Thibodeau IL, Xu J, Li Q, et al. Paradigm of genetic mosaicism and lone atrial fibrillation: physiological characterization of a connexin 43-deletion mutant identified from atrial tissue. Circulation. 2010;122:236–44. https://doi.org/10.1161/circulationaha.110.961227.

Article  CAS  PubMed  Google Scholar 

Marais E, Genade S, Huisamen B, et al. Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol. 2001;33:769–78. https://doi.org/10.1006/jmcc.2001.1347.

Article  CAS  PubMed  Google Scholar 

Ahmad F, Tomar D, Aryal ACS, et al. Nicotinamide riboside kinase-2 alleviates ischemia-induced heart failure through P38 signaling. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165609. https://doi.org/10.1016/j.bbadis.2019.165609.

Article  CAS  PubMed  Google Scholar 

Xu L, Yates CC, Lockyer P, et al. MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. J Mol Cell Cardiol. 2014;77:86–101. https://doi.org/10.1016/j.yjmcc.2014.09.011.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang M, Li Z, Zhang X, et al. Rosuvastatin attenuates atrial structural remodelling in rats with myocardial infarction through the inhibition of the p38 MAPK signalling pathway. Heart Lung Circ. 2015;24:386–94. https://doi.org/10.1016/j.hlc.2014.11.012.

Article  PubMed  Google Scholar 

Li M, Liu F, Sang M, et al. Effects of atorvastatin on p38 phosphorylation and cardiac remodeling after myocardial infarction in rats. Exp Ther Med. 2018;16:751–7. https://doi.org/10.3892/etm.2018.6201.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prompunt E, Sanit J, Barrère-Lemaire S, et al. The cardioprotective effects of secretory leukocyte protease inhibitor against myocardial ischemia/reperfusion injury. Exp Ther Med. 2018;15:5231–42. https://doi.org/10.3892/etm.2018.6097.

Article  PubMed  PubMed Central  Google Scholar 

Rogers SL, Gelfand VI. Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol. 2000;12:57–62. https://doi.org/10.1016/s0955-0674(99)00057-5.

Article  CAS  PubMed  Google Scholar 

Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature. 1984;312:237–42. https://doi.org/10.1038/312237a0.

Article  CAS  PubMed  Google Scholar 

Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome biol. 2005;6:204. https://doi.org/10.1186/gb-2004-6-1-204.

Article  PubMed  Google Scholar 

Halpain S, Dehmelt L. The MAP1 family of microtubule-associated proteins. Genome biol. 2006;7:224. https://doi.org/10.1186/gb-2006-7-6-224.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Li L, Zhang Q, et al. Phosphorylation of Microtubule- Associated Protein 4 Promotes Hypoxic Endothelial Cell Migration and Proliferation. Front Pharmacol. 2019;10:368. https://doi.org/10.3389/fphar.2019.00368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaw RM, Fay AJ, Puthenveedu MA, et al. Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell. 2007;128:547–60. https://doi.org/10.1016/j.cell.2006.12.037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smyth JW, Hong TT, Gao D, et al. Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Investig. 2010;120:266–79. https://doi.org/10.1172/jci39740.

Article  CAS  PubMed  Google Scholar 

Ligon LA, Holzbaur EL. Microtubules tethered at epithelial cell junctions by dynein facilitate efficient junction assembly. Traffic. 2007;8:808–19. https://doi.org/10.1111/j.1600-0854.2007.00574.x.

Article  CAS  PubMed  Google Scholar 

Levy JR, Holzbaur EL. Special delivery: dynamic targeting via cortical capture of microtubules. Dev Cell. 2007;12:320–2. https://doi.org/10.1016/j.devcel.2007.02.012.

Article  CAS  PubMed  Google Scholar 

Hu JY, Chu ZG, Han J, et al. The p38/MAPK pathway regulates microtubule polymerization through phosphorylation of MAP4 and Op18 in hypoxic cells. Cell Mol Life Sci. 2010;67:321–33. https://doi.org/10.1007/s00018-009-0187-z.

Article  CAS  PubMed  Google Scholar 

van Rijen HV, Eckardt D, Degen J, et al. Slow conduction and enhanced anisotropy increase the propensity for ventricular tachyarrhythmias in adult mice with induced deletion of connexin43. Circulation. 2004;109:1048–55. https://doi.org/10.1161/01.cir.0000117402.70689.75.

Article  PubMed  Google Scholar 

Fontes MS, van Veen TA, de Bakker JM, et al. Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta Biomembr. 2012;1818:2020–9. https://doi.org/10.1016/j.bbamem.2011.07.039.

Article  CAS  Google Scholar 

Smyth JW, Vogan JM, Buch PJ, et al. Actin Cytoskeleton Rest Stops Regulate Anterograde Traffic of Connexin 43 Vesicles to the Plasma Membrane. Circ Res. 2012;110:978–89. https://doi.org/10.1161/circresaha.111.257964.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Veeraraghavan R, Lin J, Hoeker GS, et al. Sodium channels in the Cx43 gap junction perinexus may constitute a cardiac ephapse: an experimental and modeling study. Pflügers Arch Eur J Physiol. 2015;467:2093–105. https://doi.org/10.1007/s00424-014-1675-z.

Article  CAS  Google Scholar 

Matthew Rhett J, Ongstad EL, Jourdan J, et al. Cx43 Associates with Nav1.5 in the Cardiomyocyte Perinexus. J Membr Biol. 2012;245:411–22. https://doi.org/10.1007/s00232-012-9465-z.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nasilli G, Lin X, Perez-Hernandez M et al Targeting microtubule dynamics improves cardiac sodium channel function in arrhythmogenic cardiomyopathy. European Heart Journal. (2023) 44: https://doi.org/10.1093/eurheartj/ehad655.3060

Smyth JW, Shaw RM. Autoregulation of connexin43 gap junction formation by internally translated isoforms. Cell Rep. 2013;5:611–8. https://doi.org/10.1016/j.celrep.2013.10.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basheer WA, Xiao S, Epifantseva I, et al. GJA1-20k Arranges Actin to Guide Cx43 Delivery to Cardiac Intercalated Discs. Circ Res. 2017;121:1069–80. https://doi.org/10.1161/circresaha.117.311955.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basheer WA, Fu Y, Shimura D et al Stress response protein GJA1–20k promotes mitochondrial biogenesis, metabolic quiescence, and cardioprotection against ischemia/reperfusion injury. JCI insight. (2018) 3: https://doi.org/10.1172/jci.insight.121900

留言 (0)

沒有登入
gif