TRIM58 downregulation maintains stemness via MYH9-GRK3-YAP axis activation in triple-negative breast cancer stem cells

Kashyap D, Pal D, Sharma R, Garg VK, Goel N, Koundal D, et al. Global increase in breast cancer incidence: risk factors and preventive measures. BioMed Res Int. 2022;2022:9605439.

Article  PubMed  PubMed Central  Google Scholar 

Tsang JYS, Tse GM. Molecular classification of breast cancer. Adv Anatom Pathol. 2020;27:27–35.

Article  CAS  Google Scholar 

Derakhshan F, Reis-Filho JS. Pathogenesis of triple-negative breast cancer. Ann Rev Pathol. 2022;17:181–204.

Article  CAS  Google Scholar 

Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22:61.

Article  PubMed  PubMed Central  Google Scholar 

Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: biology and therapeutic implications. Int J Biochem Cell Biol. 2019;107:38–52.

Article  CAS  PubMed  Google Scholar 

Kuşoğlu A, Biray Avcı Ç. Cancer stem cells: A brief review of the current status. Gene. 2019;681:80–85.

Article  PubMed  Google Scholar 

Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clarke MF. Clinical and therapeutic implications of cancer stem cells. New England J Med. 2019;380:2237–45.

Article  CAS  Google Scholar 

Biserova K, Jakovlevs A, Uljanovs R, Strumfa I. Cancer stem cells: significance in origin, pathogenesis and treatment of glioblastoma. Cells. 2021;10:621.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol. 2020;17:204–32.

Article  PubMed  Google Scholar 

Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y, et al. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res. 2021;163:105320.

Article  CAS  PubMed  Google Scholar 

Nam NP, Fabio AS, Alex C, Ly NM, Deirdre C, Karlsson U, et al. Molecular biology of breast cancer stem cells: potential clinical applications. Cancer Treat Rev. 2020;36:485–91.

Google Scholar 

Yang F, Cui P, Lu Y, Zhang X. Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells. Stem Cell Res Therapy. 2019;10:233.

Article  Google Scholar 

Yang F, Chen S, He S, Huo Q, Hu Y, Xie N. YB-1 interplays with ERα to regulate the stemness and differentiation of ER-positive breast cancer stem cells. Theranostics. 2020;10:3816–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42:297–311.

Article  CAS  PubMed  Google Scholar 

Cai C, Tang YD, Zhai J, Zheng C. The RING finger protein family in health and disease. Signal Transduct Targeted Therapy. 2022;7:300.

Article  CAS  Google Scholar 

Zhu Y, Afolabi LO, Wan X, Shim JS, Chen L. TRIM family proteins: roles in proteostasis and neurodegenerative diseases. Open Biol. 2022;12:220098.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thom CS, Traxler EA, Khandros E, Nickas JM, Zhou OY, Lazarus JE, et al. Trim58 degrades Dynein and regulates terminal erythropoiesis. Dev Cell. 2014;30:688–700.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu X, Long Z, Cai H, Yu S, Wu J. TRIM58 suppresses the tumor growth in gastric cancer by inactivation of β-catenin signaling via ubiquitination. Cancer Biol Therapy. 2020;21:203–12.

Article  CAS  Google Scholar 

Shi YX. Identification of the molecular function of tripartite motif containing 58 in human lung cancer. Oncology letters. 2021;22:685.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan P, Zhou Y, Wang R, Chen S, Wang Q, Xu Z, et al. TRIM58 interacts with pyruvate kinase M2 to inhibit tumorigenicity in human osteosarcoma cells. BioMed Res Int. 2020;2020:8450606.

Article  PubMed  PubMed Central  Google Scholar 

Shang R, Chen J, Gao Y, Chen J, Han G. TRIM58 Interacts with ZEB1 to Suppress NSCLC Tumor Malignancy by Promoting ZEB1 Protein Degradation via UPP. Disease markers. 2023;2023:5899662.

Article  PubMed  PubMed Central  Google Scholar 

Liu JH, Yang HL, Deng ST, Hu Z, Chen WF, Yan WW, et al. The small molecule chemical compound cinobufotalin attenuates resistance to DDP by inducing ENKUR expression to suppress MYH9-mediated c-Myc deubiquitination in lung adenocarcinoma. Acta Pharmacol Sin. 2022;43:2687–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye G, Yang Q, Lei X, Zhu X, Li F, He J, et al. Nuclear MYH9-induced CTNNB1 transcription, targeted by staurosporin, promotes gastric cancer cell anoikis resistance and metastasis. Theranostics. 2020;10:7545–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu SY, Takahashi S, Arinami T, Ohkubo T, Nemoto Y, Tanabe E, et al. Mutation screening and association study of the beta-adrenergic receptor kinase 2 gene in schizophrenia families. Psychiatry Res. 2004;125:95–104.

Article  CAS  PubMed  Google Scholar 

Li Y, Fan Y, Xu J, Huo L, Scott AW, Jin J, et al. GRK3 is a poor prognosticator and serves as a therapeutic target in advanced gastric adenocarcinoma. J Exp Clin Cancer Res. 2022;41:257.

Article  PubMed  PubMed Central  Google Scholar 

Yuan B, Liu J, Shi A, Cao J, Yu Y, Zhu Y, et al. HERC3 promotes YAP/TAZ stability and tumorigenesis independently of its ubiquitin ligase activity. EMBO J. 2023;42:e111549.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Yang F, Zhuang J, Huo Q, Li J, Xie N. TRIM58 inactivates p53/p21 to promote chemoresistance via ubiquitination of DDX3 in breast cancer. Int J Biochem Cell Biol. 2022;143:106140.

Article  CAS  PubMed  Google Scholar 

Zheng YZ, Li JY, Ning LW, Xie N. Predictive and prognostic value of TRIM58 protein expression in patients with breast cancer receiving neoadjuvant chemotherapy. Breast Cancer (Dove Med Press). 2022;14:475–87.

CAS  PubMed  Google Scholar 

Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene. 2018;664:152–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Althaus K, Greinacher A. MYH9-related platelet disorders. Semin Thrombosis Hemostasis. 2009;35:189–203.

Article  CAS  Google Scholar 

Bai C, Su M, Zhang Y, Lin Y, Sun Y, Song L, et al. Oviductal glycoprotein 1 promotes hypertension by inducing vascular remodeling through an interaction with MYH9. Circulation. 2022;146:1367–82.

Article  CAS  PubMed  Google Scholar 

Zhong Y, Long T, Gu CS, Tang JY, Gao LF, Zhu JX, et al. MYH9-dependent polarization of ATG9B promotes colorectal cancer metastasis by accelerating focal adhesion assembly. Cell Death Differentiation. 2021;28:3251–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao S, Wang S, Zhao Z, Zhang C, Liu Z, Ye P, et al. TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling. Nat Commun. 2022;13:2792.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin X, Li AM, Li YH, Luo RC, Zou YJ, Liu YY, et al. Silencing MYH9 blocks HBx-induced GSK3β ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. Signal Transduct Targeted Therapy. 2020;5:13.

Article  CAS  Google Scholar 

Kai JD, Cheng LH, Li BF, Kang K, Xiong F, Fu JC, et al. MYH9 is a novel cancer stem cell marker and prognostic indicator in esophageal cancer that promotes oncogenesis through the PI3K/AKT/mTOR axis. Cell Biol Int. 2022;46:2085–94.

Article  CAS  PubMed  Google Scholar 

Fang CL, Tian YF, Lin SS, Hung ST, Hseu YC, Chang CC, et al. GRK3 as a prognosis biomarker in gastric cancer. J Cancer. 2022;13:1299–306.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif