Dexmedetomidine attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora

Mei B, Xu G, Han W, Lu X, Liu R, Cheng X, Chen S, Gu E, Liu X, Zhang Y, G Perioperative Neurocognitive Disorders Study. The benefit of dexmedetomidine on postoperative cognitive function is unrelated to the modulation on peripheral inflammation: a single-center, prospective, randomized study. Clin J Pain. 2020;36:88–95.

Article  PubMed  Google Scholar 

Qian XL, Zhang W, Liu MZ, Zhou YB, Zhang JM, Han L, Peng YM, Jiang JH, Wang QD. Dexmedetomidine improves early postoperative cognitive dysfunction in aged mice. Eur J Pharmacol. 2015;746:206–12.

Article  CAS  PubMed  Google Scholar 

Guo B, Chen C, Yang L, Zhu R. Effects of dexmedetomidine on postoperative cognitive function of sleep deprivation rats based on changes in inflammatory response. Bioengineered. 2021;12:7920–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu J, Vacas S, Feng X, Lutrin D, Uchida Y, Lai IK, Maze M. Dexmedetomidine prevents cognitive decline by enhancing resolution of high mobility group box 1 protein-induced inflammation through a vagomimetic action in mice. Anesthesiology. 2018;128:921–31.

Article  CAS  PubMed  Google Scholar 

Chen X, Chen D, Li Q, Wu S, Pan J, Liao Y, Zheng X, Zeng W. Dexmedetomidine alleviates hypoxia-induced synaptic loss and cognitive impairment via inhibition of microglial NOX2 activation in the hippocampus of neonatal rats. Oxid Med Cell Longev. 2021;2021:6643171.

PubMed  PubMed Central  Google Scholar 

Wang G, Wu X, Zhu G, Han S, Zhang J. Dexmedetomidine alleviates sleep-restriction-mediated exaggeration of postoperative immunosuppression via splenic TFF2 in aged mice. Aging (Albany NY). 2020;12:5318–35.

Article  CAS  PubMed  Google Scholar 

Rutsch A, Kantsjo JB, Ronchi F. The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol. 2020;11: 604179.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C. Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci. 2021;264: 118627.

Article  CAS  PubMed  Google Scholar 

Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20:145–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Misiak B, Loniewski I, Marlicz W, Frydecka D, Szulc A, Rudzki L, Samochowiec J. The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry. 2020;102: 109951.

Article  CAS  PubMed  Google Scholar 

Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, Macqueen G, Sherman PM. Bacterial infection causes stress-induced memory dysfunction in mice. Gut. 2011;60:307–17.

Article  PubMed  Google Scholar 

Zhang WJ, Cao WY, Huang YQ, Cui YH, Tu BX, Wang LF, Zou GJ, Liu Y, Hu ZL, Hu R, Li CQ, Xing XW, Li F. The role of miR-150 in stress-induced anxiety-like behavior in mice. Neurotox Res. 2019;35:160–72.

Article  PubMed  Google Scholar 

Cui YH, Zhou SF, Liu Y, Wang S, Li F, Dai RP, Hu ZL, Li CQ. Injection of anti-proBDNF attenuates hippocampal-dependent learning and memory dysfunction in mice with sepsis-associated encephalopathy. Front Neurosci. 2021;15: 665757.

Article  PubMed  PubMed Central  Google Scholar 

Liao YL, Zhou XY, Ji MH, Qiu LC, Chen XH, Gong CS, Lin Y, Guo YH, Yang JJ. S100A9 upregulation contributes to learning and memory impairments by promoting microglia M1 polarization in sepsis survivor mice. Inflammation. 2021;44:307–20.

Article  CAS  PubMed  Google Scholar 

Rohart F, Gautier B, Singh A, Le Cao KA. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13: e1005752.

Article  PubMed  PubMed Central  Google Scholar 

Zhang N, Zhang H, Liu Z, Dai Z, Wu W, Zhou R, Li S, Wang Z, Liang X, Wen J, Zhang X, Zhang B, Ouyang S, Zhang J, Luo P, Li X, Cheng Q. An artificial intelligence network-guided signature for predicting outcome and immunotherapy response in lung adenocarcinoma patients based on 26 machine learning algorithms. Cell Prolif. 2023;56: e13409.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Dai Z, Wu X, Zhang N, Zhang H, Wang Z, Zhang X, Liang X, Luo P, Zhang J, Liu Z, Zhou Y, Cheng Q, Chang R. The comprehensive analysis identified an autophagy signature for the prognosis and the immunotherapy efficiency prediction in lung adenocarcinoma. Front Immunol. 2022;13: 749241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mahmoud M, Mason KP. Dexmedetomidine: review, update, and future considerations of paediatric perioperative and periprocedural applications and limitations. Br J Anaesth. 2015;115:171–82.

Article  CAS  PubMed  Google Scholar 

Jang M, Jung T, Kim SH, Noh J. Sex differential effect of dexmedetomidine on fear memory extinction and anxiety behavior in adolescent rats. Neurosci Res. 2019;149:29–37.

Article  PubMed  Google Scholar 

Qiao H, Xie Z, Jia J. Pediatric premedication: a double-blind randomized trial of dexmedetomidine or ketamine alone versus a combination of dexmedetomidine and ketamine. BMC Anesthesiol. 2017;17:158.

Article  PubMed  PubMed Central  Google Scholar 

Mei B, Li J, Zuo Z. Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central alpha2A adrenoceptor. Brain Behav Immun. 2021;91:296–314.

Article  CAS  PubMed  Google Scholar 

Ohta Y, Miyamoto K, Kawazoe Y, Yamamura H, Morimoto T. Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: a sub-analysis of a multicenter randomized clinical trial. Crit Care. 2020;24:493.

Article  PubMed  PubMed Central  Google Scholar 

Li H, Zhang X, Chen M, Chen J, Gao T, Yao S. Dexmedetomidine inhibits inflammation in microglia cells under stimulation of LPS and ATP by c-Fos/NLRP3/caspase-1 cascades. EXCLI J. 2018;17:302–11.

PubMed  PubMed Central  Google Scholar 

Wang K, Wu M, Xu J, Wu C, Zhang B, Wang G, Ma D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: systematic review and meta-analysis. Br J Anaesth. 2019;123:777–94.

Article  CAS  PubMed  Google Scholar 

Feng X, Guan W, Zhao Y, Wang C, Song M, Yao Y, Yang T, Fan H. Dexmedetomidine ameliorates lipopolysaccharide-induced acute kidney injury in rats by inhibiting inflammation and oxidative stress via the GSK-3beta/Nrf2 signaling pathway. J Cell Physiol. 2019;234:18994–9009.

Article  CAS  PubMed  Google Scholar 

Bao N, Tang B. Organ-protective effects and the underlying mechanism of dexmedetomidine. Mediators Inflamm. 2020;2020:6136105.

Article  PubMed  PubMed Central  Google Scholar 

Gao J, Sun Z, Xiao Z, Du Q, Niu X, Wang G, Chang YW, Sun Y, Sun W, Lin A, Bresnahan JC, Maze M, Beattie MS, Pan JZ. Dexmedetomidine modulates neuroinflammation and improves outcome via alpha2-adrenergic receptor signaling after rat spinal cord injury. Br J Anaesth. 2019;123:827–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li R, Lai IK, Pan JZ, Zhang P, Maze M. Dexmedetomidine exerts an anti-inflammatory effect via alpha2 adrenoceptors to prevent lipopolysaccharide-induced cognitive decline in mice. Anesthesiology. 2020;133:393–407.

Article  CAS  PubMed  Google Scholar 

Wang Y, Mao X, Chen H, Feng J, Yan M, Wang Y, Yu Y. Dexmedetomidine alleviates LPS-induced apoptosis and inflammation in macrophages by eliminating damaged mitochondria via PINK1 mediated mitophagy. Int Immunopharmacol. 2019;73:471–81.

Article  CAS  PubMed  Google Scholar 

Meng Q, Guo P, Jiang Z, Bo L, Bian J. Dexmedetomidine inhibits LPS-induced proinflammatory responses via suppressing HIF1alpha-dependent glycolysis in macrophages. Aging (Albany NY). 2020;12:9534–48.

Article  CAS  PubMed  Google Scholar 

Ding M, Chen Y, Luan H, Zhang X, Zhao Z, Wu Y. Dexmedetomidine reduces inflammation in traumatic brain injury by regulating the inflammatory responses of macrophages and splenocytes. Exp Ther Med. 2019;18:2323–31.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang Z, Zhang Y, Li J, Fu C, Zhang X. The neuroprotective effect of tea polyphenols on the regulation of intestinal flora. Molecules. 2021;26:3692.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang C, Yang X, Zeng B, Zeng L, Gong X, Zhou C, Xia J, Lian B, Qin Y, Yang L, Liu L, Xie P. Proteomic analysis of olfactory bulb suggests CACNA1E as a promoter of CREB signaling in microbiota-induced depression. J Proteomics. 2019;194:132–47.

Article  CAS  PubMed  Google Scholar 

Yang H, Liu Y, Cai R, Li Y, Gu B. A narrative review of relationship between gut microbiota and neuropsychiatric disorders: mechanisms and clinical application of probiotics and prebiotics. Ann Palliat Med. 2021;10:2304–13.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif