Structures, mechanisms and applications of RNA-centric CRISPR–Cas13

Jia, N. & Patel, D. J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat. Rev. Mol. Cell Biol. 22, 563–579 (2021).

Article  CAS  PubMed  Google Scholar 

Borges, A. L., Davidson, A. R. & Bondy-Denomy, J. The discovery, mechanisms, and evolutionary impact of anti-CRISPRs. Annu. Rev. Virol. 4, 37–59 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson, A. R. et al. Anti-CRISPRs: protein inhibitors of CRISPR–Cas systems. Annu. Rev. Biochem. 89, 309–332 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y. & Bondy-Denomy, J. Anti-CRISPRs go viral: the infection biology of CRISPR–Cas inhibitors. Cell Host Microbe 29, 704–714 (2021).

CAS  Google Scholar 

Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism and function. Nat. Rev. Microbiol. 16, 12–17 (2018).

Article  CAS  PubMed  Google Scholar 

Shivram, H., Cress, B. F., Knott, G. J. & Doudna, J. A. Controlling and enhancing CRISPR systems. Nat. Chem. Biol. 17, 10–19 (2021).

Article  CAS  PubMed  Google Scholar 

Sontheimer, E. J. & Davidson, A. R. Inhibition of CRISPR–Cas systems by mobile genetic elements. Curr. Opin. Microbiol. 37, 120–127 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stanley, S. Y. & Maxwell, K. L. Phage-encoded anti-CRISPR defenses. Annu. Rev. Genet. 52, 445–464 (2018).

Article  CAS  PubMed  Google Scholar 

Trasanidou, D. et al. Keeping CRISPR in check: diverse mechanisms of phage-encoded anti-CRISPRs. FEMS Microbiol. Lett. 366, fnz098 (2019).

Wiegand, T., Karambelkar, S., Bondy-Denomy, J. & Wiedenheft, B. Structures and strategies of anti-CRISPR-mediated immune suppression. Annu. Rev. Microbiol. 74, 21–37 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marino, N. D., Pinilla-Redondo, R., Csorgo, B. & Bondy-Denomy, J. Anti-CRISPR protein applications: natural brakes for CRISPR–Cas technologies. Nat. Methods 17, 471–479 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

van der Oost, J., Westra, E. R., Jackson, R. N. & Wiedenheft, B. Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12, 479–492 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Jackson, R. N., van Erp, P. B., Sternberg, S. H. & Wiedenheft, B. Conformational regulation of CRISPR-associated nucleases. Curr. Opin. Microbiol. 37, 110–119 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nishimasu, H. & Nureki, O. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Curr. Opin. Struct. Biol. 43, 68–78 (2017).

Article  CAS  PubMed  Google Scholar 

Molina, R., Sofos, N. & Montoya, G. Structural basis of CRISPR–Cas type III prokaryotic defence systems. Curr. Opin. Struct. Biol. 65, 119–129 (2020).

Article  CAS  PubMed  Google Scholar 

Nussenzweig, P. M. & Marraffini, L. A. Molecular mechanisms of CRISPR–Cas immunity in bacteria. Annu. Rev. Genet. 54, 93–120 (2020).

Article  CAS  PubMed  Google Scholar 

Koonin, E. V. & Makarova, K. S. Evolutionary plasticity and functional versatility of CRISPR systems. PLoS Biol. 20, e3001481 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGinn, J. & Marraffini, L. A. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat. Rev. Microbiol. 17, 7–12 (2019).

Article  CAS  PubMed  Google Scholar 

Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR–Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amitai, G. & Sorek, R. CRISPR–Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 14, 67–76 (2016).

Article  CAS  PubMed  Google Scholar 

Mosterd, C., Rousseau, G. M. & Moineau, S. A short overview of the CRISPR–Cas adaptation stage. Can. J. Microbiol. 67, 1–12 (2021).

Article  CAS  PubMed  Google Scholar 

Sasnauskas, G. & Siksnys, V. CRISPR adaptation from a structural perspective. Curr. Opin. Struct. Biol. 65, 17–25 (2020).

Article  PubMed  Google Scholar 

Hochstrasser, M. L. & Doudna, J. A. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem. Sci. 40, 58–66 (2015).

Article  CAS  PubMed  Google Scholar 

Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brouns, S. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).

Article  CAS  PubMed  Google Scholar 

Marraffini, L. A. & Sontheimer, E. J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

Article  CAS  PubMed  Google Scholar 

Makarova, K. S. et al. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9, 467–477 (2011).

Article  CAS  PubMed  Google Scholar 

Makarova, K. S., Zhang, F. & Koonin, E. V. SnapShot: class 1 CRISPR–Cas systems. Cell 168, 946 (2017).

Article  CAS  PubMed  Google Scholar 

Makarova, K. S., Zhang, F. & Koonin, E. V. SnapShot: class 2 CRISPR–Cas systems. Cell 168, 328 (2017).

Article  CAS  PubMed  Google Scholar 

Shmakov, S. et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smargon, A. A. et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618–630 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Konermann, S. et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173, 665–676 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage. Nature 570, 241–245 (2019). The paper demonstrates that the trans-RNase activity of Cas13 arrests host growth, thereby interrupting the infectious cycle.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016). This article characterizes Cas13 (known as C2c2) for the first time and shows that Cas13a can be programmed for RNA interference in E. coli cells.

Article  PubMed  PubMed Central  Google Scholar 

van Beljouw, S. P. B., Sanders, J., Rodriguez-Molina, A. & Brouns, S. J. J. RNA-targeting CRISPR–Cas systems. Nat. Rev. Microbiol. 21, 21–34 (2023).

Article  PubMed  Google Scholar 

Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327–339 (2018).

Article 

留言 (0)

沒有登入
gif