The β-subunit of tryptophan synthase is a latent tyrosine synthase

Lynch, J. H. & Dudareva, N. Aromatic amino acids: a complex network ripe for future exploration. Trends Plant Sci. 25, 670–681 (2020).

Article  CAS  PubMed  Google Scholar 

Rodriguez, A. et al. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb. Cell Fact. 13, 126 (2014).

PubMed  PubMed Central  Google Scholar 

Lütke-Eversloh, T., Santos, C. N. S. & Stephanopoulos, G. Perspectives of biotechnological production of l-tyrosine and its applications. Appl. Microbiol. Biotechnol. 77, 751–762 (2007).

Article  PubMed  Google Scholar 

Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo, H. et al. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat. Commun. 4, 2833 (2013).

Article  PubMed  Google Scholar 

Merino, E., Jensen, R. A. & Yanofsky, C. Evolution of bacterial trp operons and their regulation. Curr. Opin. Microbiol. 11, 78–86 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Richards, T. A. et al. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot. Cell 5, 1517–1531 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porat, I., Waters, B. W., Teng, Q. & Whitman, W. B. Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J. Bacteriol. 186, 4940–4950 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parmeggiani, F., Weise, N. J., Ahmed, S. T. & Turner, N. J. Synthetic and therapeutic applications of ammonia-lyases and aminomutases. Chem. Rev. 118, 73–118 (2018).

Article  CAS  PubMed  Google Scholar 

Almhjell, P. J., Boville, C. E. & Arnold, F. H. Engineering enzymes for noncanonical amino acid synthesis. Chem. Soc. Rev. 47, 8980–8997 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagasawa, T. et al. Syntheses of l-tyrosine-related amino acids by tyrosine phenol-lyase of Citrobacter intermedius. Eur. J. Biochem. 117, 33–40 (1981).

Article  CAS  PubMed  Google Scholar 

Phillips, R. S., Sundararaju, B. & Faleev, N. G. Proton transfer and carbon–carbon bond cleavage in the elimination of indole catalyzed by Escherichia coli tryptophan indole-lyase. J. Am. Chem. Soc. 122, 1008–1014 (2000).

Article  CAS  Google Scholar 

Seyedsayamdost, M. R., Reece, S. Y., Nocera, D. G. & Stubbe, J. Mono-, di-, tri-, and tetra-substituted fluorotyrosines: new probes for enzymes that use tyrosyl radicals in catalysis. J. Am. Chem. Soc. 128, 1569–1579 (2006).

Article  CAS  PubMed  Google Scholar 

Romei, M. G., Lin, C.-Y., Mathews, I. I. & Boxer, S. G. Electrostatic control of photoisomerization pathways in proteins. Science 367, 76–79 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beber, M. E. et al. eQuilibrator 3.0: a database solution for thermodynamic constant estimation. Nucleic Acids Res. 50, D603–D609 (2022).

Article  CAS  PubMed  Google Scholar 

Watkins-Dulaney, E., Straathof, S. & Arnold, F. Tryptophan synthase: biocatalyst extraordinaire. ChemBioChem 22, 5–16 (2021).

Article  CAS  PubMed  Google Scholar 

Rix, G. et al. Scalable continuous evolution for the generation of diverse enzyme variants encompassing promiscuous activities. Nat. Commun. 11, 5644 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, D. R. M. et al. The first one-pot synthesis of l-7-iodotryptophan from 7-iodoindole and serine, and an improved synthesis of other l-7-halotryptophans. Org. Lett. 16, 2622–2625 (2014).

Article  CAS  PubMed  Google Scholar 

Buller, A. R. et al. Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. Proc. Natl Acad. Sci. USA 112, 14599–14604 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Herger, M. et al. Synthesis of β-branched tryptophan analogues using an engineered subunit of tryptophan synthase. J. Am. Chem. Soc. 138, 8388–8391 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romney, D. K., Murciano-Calles, J., Wehrmüller, J. E. & Arnold, F. H. Unlocking reactivity of TrpB: a general biocatalytic platform for synthesis of tryptophan analogues. J. Am. Chem. Soc. 139, 10769–10776 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romney, D. K., Sarai, N. S. & Arnold, F. H. Nitroalkanes as versatile nucleophiles for enzymatic synthesis of noncanonical amino acids. ACS Catal. 9, 8726–8730 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dick, M., Sarai, N. S., Martynowycz, M. W., Gonen, T. & Arnold, F. H. Tailoring tryptophan synthase TrpB for selective quaternary carbon bond formation. J. Am. Chem. Soc. 141, 19817–19822 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Watkins, E. J., Almhjell, P. J. & Arnold, F. H. Direct enzymatic synthesis of a deep-blue fluorescent noncanonical amino acid from azulene and serine. ChemBioChem 21, 80–83 (2020).

Article  CAS  PubMed  Google Scholar 

Watkins-Dulaney, E. J. et al. Asymmetric alkylation of ketones catalyzed by engineered TrpB. Angew. Chem. Int. Ed. 60, 21412–21417 (2021).

Article  CAS  Google Scholar 

Saito, Y., Sato, T., Nomoto, K. & Tsuji, H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol. Ecol. 94, fiy125 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Álvarez-Rodríguez, M. L. et al. Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples. FEMS Microbiol. Lett. 220, 49–55 (2003).

Article  PubMed  Google Scholar 

Iwasaki, Y. et al. Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme. Biodegradation 21, 557–564 (2010).

Article  CAS  PubMed  Google Scholar 

Kuzuyama, T., Noel, J. P. & Richard, S. B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435, 983–987 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krastanov, A., Alexieva, Z. & Yemendzhiev, H. Microbial degradation of phenol and phenolic derivatives. Eng. Life Sci. 13, 76–87 (2013).

Article  CAS  Google Scholar 

Milić, D. et al. Crystallographic snapshots of tyrosine phenol-lyase show that substrate strain plays a role in C–C bond cleavage. J. Am. Chem. Soc. 133, 16468–16476 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Chen, Z. & Zhao, H. Rapid creation of a novel protein function by in vitro coevolution. J. Mol. Biol. 348, 1273–1282 (2005).

Article  CAS  PubMed  Google Scholar 

Boville, C. E., Romney, D. K., Almhjell, P. J., Sieben, M. & Arnold, F. H. Improved synthesis of 4-cyanotryptophan and other tryptophan analogues in aqueous solvent using variants of TrpB from Thermotoga maritima. J. Org. Chem. 83, 7447–7452 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruvinov, S. B., Ahmed, S. A., McPhie, P. & Miles, E. W. Monovalent cations partially repair a conformational defect in a mutant tryptophan synthase α2β2 complex (β-E109A). J. Biol. Chem. 270, 17333–17338 (1995).

Article  CAS  PubMed  Google Scholar 

Wittmann, B. J., Johnston, K. E., Almhjell, P. J. & Arnold, F. H. evSeq: cost-effective amplicon sequencing of every variant in a protein library. ACS Synth. Biol. 11, 1313–1324 (2022).

Article  CAS  PubMed  Google Scholar 

Busch, F. et al. TrpB2 enzymes are O-phospho-l-serine dependent tryptophan synthases. Biochemistry 53, 6078–6083 (2014).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif