P3H4 Regulates Apoptosis and Autophagy of Breast Cancer Cells via BCL-2/BAX/Caspase-3 and AMPK/mTOR/ULK1 Signaling Pathways

Akram M., Iqbal M., Daniyal M., Khan A.U. 2017. Awareness and current knowledge of breast cancer. Bi-ol. Res. 50, 33. https://doi.org/10.1186/s40659-017-0140-9

Article  CAS  Google Scholar 

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209‒249. https://doi.org/10.3322/caac.21660

Article  CAS  PubMed  Google Scholar 

Ochs R.L., Stein T.W., Jr., Chan E.K., Ruutu M., Tan E.M. 1996. cDNA cloning and characterization of a novel nucleolar protein. Mol. Biol. Cell. 7, 1015‒1024. https://doi.org/10.1091/mbc.7.7.1015

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gaboreanu A.M., Hrstka R., Xu W., Shy M., Kamholz J., Lilien J., Balsamo J. 2007. Myelin protein zero/P0 phosphorylation and function require an adaptor protein linking it to RACK1 and PKC alpha. J. Cell Biol. 177, 707‒716. https://doi.org/10.1083/jcb.200608060

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gruenwald K., Castagnola P., Besio R., Dimori M., Chen Y., Akel N.S., Swain F.L., Skinner R.A., Eyre D.R., Gaddy D., Suva L.J., Morello R. 2014. Sc65 is a novel endoplasmic reticulum protein that regulates bone mass homeostasis. J. Bone Miner. Res. 29, 666‒675. https://doi.org/10.1002/jbmr.2075

Article  CAS  PubMed  Google Scholar 

Romcy-Pereira R.N., Erraji-Benchekroun L., Smyrniotopoulos P., Ogawa S., Mello C.V., Sibille E., Pavlides C. 2009. Sleep-dependent gene expression in the hippocampus and prefrontal cortex following long-term potentiation. Physiol. Behav. 98, 44‒52. https://doi.org/10.1016/j.physbeh.2009.04.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hao L., Pang K., Pang H., Zhang J., Zhang Z., He H., Zhou R., Shi Z., Han C. 2020. Knockout of P3H4 inhibits proliferation and invasion of bladder cancer. Aging (Albany NY). 12, 2156‒2168. https://doi.org/10.18632/aging.102732

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fossa A., Siebert R., Aasheim H.C., Maelandsmo G.M., Berner A., Fossa S.D., Paus E., Smeland E.B., Gaudernack G. 2000. Identification of nucleolar protein No55 as a tumour-associated autoantigen in patients with prostate cancer. Br. J. Cancer. 83, 743‒749. https://doi.org/10.1054/bjoc.2000.1365

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin X., Zhou H., Song J., Cui H., Luo Y., Jiang H. 2021. P3H4 overexpression serves as a prognostic factor in lung adenocarcinoma. Comput. Math. Methods Med. 2021, 9971353. https://doi.org/10.1155/2021/9971353

Wan B., Zeng Q., Tang X.Z., Tang Y.X. 2018. P3H4 affects renal carcinoma through up-regulating miR-1/133a. Eur. Rev. Med. Pharmacol. Sci. 22, 5180‒5186. https://doi.org/10.26355/eurrev_201808_15714

Article  CAS  PubMed  Google Scholar 

Gump J.M., Thorburn A. 2011. Autophagy and apoptosis: what is the connection? Trends Cell Biol. 21, 387‒392. https://doi.org/10.1016/j.tcb.2011.03.007

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saita S., Shirane M., Nakayama K.I. 2013. Selective escape of proteins from the mitochondria during mitophagy. Nat. Commun. 4, 1410. https://doi.org/10.1038/ncomms2400

Article  CAS  PubMed  Google Scholar 

Sorice M. 2022. Crosstalk of autophagy and apoptosis. Cells. 11 (9), 1479. https://doi.org/10.3390/cells11091479

Article  PubMed  PubMed Central  Google Scholar 

Pattingre S., Tassa A., Qu X., Garuti R., Liang X.H., Mizushima N., Packer M., Schneider M.D., Levine B. 2005. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 122, 927‒939. https://doi.org/10.1016/j.cell.2005.07.002

Article  CAS  PubMed  Google Scholar 

Crighton D., Wilkinson S., O’Prey J., Syed N., Smith P., Harrison P.R., Gasco M., Garrone O., Crook T., Ryan K.M. 2006. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 126, 121‒134. https://doi.org/10.1016/j.cell.2006.05.034

Article  CAS  PubMed  Google Scholar 

Kenzelmann Broz D., Spano Mello S., Bieging K.T., Jiang D., Dusek R.L., Brady C.A., Sidow A., Attardi L.D. 2013. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev. 27, 1016‒1031. https://doi.org/10.1101/gad.212282.112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dong Y., Chen H., Gao J., Liu Y., Li J., Wang J. 2019. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J. Mol. Cell. Cardiol. 136, 27‒41. https://doi.org/10.1016/j.yjmcc.2019.09.001

Article  CAS  PubMed  Google Scholar 

Clifton L.A., Wacklin-Knecht H.P., Aden J., Mushtaq A.U., Sparrman T., Grobner G. 2023. Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis. Sci. Adv. 9, eadg7940. https://doi.org/10.1126/sciadv.adg7940

Levine B., Sinha S., Kroemer G. 2008. Bcl-2 family members: Dual regulators of apoptosis and autophagy. Autophagy. 4, 600‒606. https://doi.org/10.4161/auto.6260

Article  CAS  PubMed  Google Scholar 

Maiuri M.C., Le Toumelin G., Criollo A., Rain J.C., Gautier F., Juin P., Tasdemir E., Pierron G., Troulinaki K., Tavernarakis N., Hickman J.A., Geneste O., Kroemer G. 2007. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26, 2527‒2539. https://doi.org/10.1038/sj.emboj.7601689

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trybus W., Krol T., Trybus E., Stachurska A. 2021. Physcion induces potential anticancer effects in cervical cancer cells. Cells. 10 (8), 2029. https://doi.org/10.3390/cells10082029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hardie D.G. 2015. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol. 33, 1‒7. https://doi.org/10.1016/j.ceb.2014.09.004

Article  CAS  PubMed  Google Scholar 

Kefas B.A., Cai Y., Ling Z., Heimberg H., Hue L., Pipeleers D., Van de Casteele M. 2003. AMP-activated protein kinase can induce apoptosis of insulin-producing MIN6 cells through stimulation of c-Jun-N-terminal kinase. J. Mol. Endocrinol. 30, 151‒161. https://doi.org/10.1677/jme.0.0300151

Article  CAS  PubMed  Google Scholar 

Dagon Y., Avraham Y., Berry E.M. 2006. AMPK activation regulates apoptosis, adipogenesis, and lipolysis by eIF2alpha in adipocytes. Biochem. Biophys. Res. Commun. 340, 43‒47. https://doi.org/10.1016/j.bbrc.2005.11.159

Article  CAS  PubMed  Google Scholar 

Garcia-Gil M., Pesi R., Perna S., Allegrini S., Giannecchini M., Camici M., Tozzi M.G. 2003. 5'-Aminoimidazole-4-carboxamide riboside induces apoptosis in human neuroblastoma cells. Neuroscience. 117, 811‒820. https://doi.org/10.1016/s0306-4522(02)00836-9

Article  CAS  PubMed  Google Scholar 

Saitoh M., Nagai K., Nakagawa K., Yamamura T., Yamamoto S., Nishizaki T. 2004. Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase. Biochem. Pharmacol. 67 (10), 2005–2011. https://doi.org/10.1016/j.bcp.2004.01.020

Article  CAS  PubMed  Google Scholar 

Kefas B.A., Heimberg H., Vaulont S., Meisse D., Hue L., Pipeleers D., Van de Casteele M. 2003. AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia. 46, 250‒254. https://doi.org/10.1007/s00125-002-1030-3

Article  CAS  PubMed  Google Scholar 

Sun Q., Zhen P., Li D., Liu X., Ding X., Liu H. 2022. Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS)/5'AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells. Bioengineered. 13, 13269‒13279. https://doi.org/10.1080/21655979.2022.2079256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng Q.Y., Jin F.S., Yao C., Zhang T., Zhang G.H., Ai X. 2012. Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem. Biophys. Res. Commun. 419, 741‒747. https://doi.org/10.1016/j.bbrc.2012.02.093

Article  CAS  PubMed  Google Scholar 

Yuan H.D., Quan H.Y., Zhang Y., Kim S.H., Chung S.H. 2010. 20(S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol. Med. Rep. 3, 825‒831. https://doi.org/10.3892/mmr.2010.328

Article  CAS  PubMed  Google Scholar 

Nieminen A.I., Eskelinen V.M., Haikala H.M., Tervonen T.A., Yan Y., Partanen J.I., Klefstrom J. 2013. Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proc. Natl. Acad. Sci. U. S. A. 110, E1839‒E1848. https://doi.org/10.1073/pnas.1208530110

Article  PubMed  PubMed Central  Google Scholar 

Okoshi R., Ozaki T., Yamamoto H., Ando K., Koi-da N., Ono S., Koda T., Kamijo T., Nakagawara A., Kizaki H. 2008. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J. Biol. Chem. 283, 3979‒3987. https://doi.org/10.1074/jbc.M705232200

Article  CAS  PubMed 

留言 (0)

沒有登入
gif