Control of astrocytic Ca2+ signaling by nitric oxide-dependent S-nitrosylation of Ca2+ homeostasis modulator 1 channels

Kettenmann H, Ransom BR. The concept of neuroglia: a historical perspective. Neuroglia: Oxford University Press; 2004. p. 1–16.

Google Scholar 

Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci. 2019;22(2):154–66.

Article  CAS  PubMed  Google Scholar 

Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaplan L, Chow BW, Gu C. Neuronal regulation of the blood–brain barrier and neurovascular coupling. Nat Rev Neurosci. 2020;21(8):416–32.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim Y, Park J, Choi YK. The role of astrocytes in the central nervous system focused on BK channel and heme oxygenase metabolites: a review. Antioxidants. 2019;8(5):121.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Muñoz MF, Puebla M, Figueroa XF. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling. Front Cell Neurosci. 2015;9:59.

Article  PubMed  PubMed Central  Google Scholar 

Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19(2):182–9.

Article  CAS  PubMed  Google Scholar 

Denizot A, Arizono M, Nägerl UV, Soula H, Berry H. Simulation of calcium signaling in fine astrocytic processes: effect of spatial properties on spontaneous activity. PLOS Comput Biol. 2019;15(8):e1006795.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerra-Gomes S, Sousa N, Pinto L, Oliveira JF. Functional roles of astrocyte calcium elevations: from synapses to behavior. Front Cell Neurosci. 2018;11:427.

Article  PubMed  PubMed Central  Google Scholar 

Khakh BS, McCarthy KD. Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harbor Perspect Biol. 2015;7(4):a020404.

Article  Google Scholar 

Semyanov A, Henneberger C, Agarwal A. Making sense of astrocytic calcium signals—from acquisition to interpretation. Nat Rev Neurosci. 2020;21(10):551–64.

Article  CAS  PubMed  Google Scholar 

Semyanov A. Spatiotemporal pattern of calcium activity in astrocytic network. Cell Calcium. 2019;78:15–25.

Article  CAS  PubMed  Google Scholar 

Wang X, Takano T, Nedergaard M. Astrocytic calcium signaling: mechanism and implications for functional brain imaging. Met Mol Biol. 2009;489:93–109.

Article  CAS  Google Scholar 

Shigetomi E, Patel S, Khakh BS. Probing the complexities of astrocyte calcium signaling. Trends Cell Biol. 2016;26(4):300–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gundersen V, Storm-Mathisen J, Bergersen LH. Neuroglial transmission. Physiol Rev. 2015;95(3):695–726.

Article  CAS  PubMed  Google Scholar 

Porter JT, McCarthy KD. Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol. 1997;51(4):439–55.

Article  CAS  PubMed  Google Scholar 

Verkhratsky A. Neurotransmitter receptors in astrocytes. In: Haydon PG, Parpura V, editors. Astrocytes in (Patho)Physiology of the nervous system. Boston: Springer, US; 2009. p. 49–67.

Chapter  Google Scholar 

Parfenova H, Tcheranova D, Basuroy S, Fedinec AL, Liu J, Leffler CW. Functional role of astrocyte glutamate receptors and carbon monoxide in cerebral vasodilation response to glutamate. Am J Physiol Heart Circ Physiol. 2012;302(11):H2257–66.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seifert G, Steinhäuser C. Ionotropic glutamate receptors in astrocytes. Prog Brain Res. 2001;132:287–99.

Article  CAS  PubMed  Google Scholar 

Skowrońska K, Obara-Michlewska M, Zielińska M, Albrecht J. NMDA receptors in astrocytes: in search for roles in neurotransmission and astrocytic homeostasis. Int J Mol Sci. 2019;20(2):309.

Article  PubMed  PubMed Central  Google Scholar 

Spampinato SF, Copani A, Nicoletti F, Sortino MA, Caraci F. Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front Mol Neurosci. 2018;11:414.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bradley SJ, Challiss RAJ. G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors. Biochem Pharmacol. 2012;84(3):249–59.

Article  CAS  PubMed  Google Scholar 

Kofuji P, Araque A. G-protein-coupled receptors in astrocyte-neuron communication. Neuroscience. 2021;456:71–84.

Article  CAS  PubMed  Google Scholar 

Zur Nieden R, Deitmer JW. The role of metabotropic glutamate receptors for the generation of calcium oscillations in rat hippocampal astrocytes in situ. Cereb Cortex. 2006;16(5):676–87.

Article  PubMed  Google Scholar 

Fields RD, Burnstock G. Purinergic signalling in neuron–glia interactions. Nat Rev Neurosci. 2006;7(6):423–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen W, Nikolic L, Meunier C, Pfrieger F, Audinat E. An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci Rep. 2017;7(1):11280.

Article  PubMed  PubMed Central  Google Scholar 

Schipke CG, Kettenmann H. Astrocyte responses to neuronal activity. Glia. 2004;47(3):226–32.

Article  PubMed  Google Scholar 

Zonta M, Carmignoto G. Calcium oscillations encoding neuron-to-astrocyte communication. J Physiol. 2002;96(3–4):193–8.

CAS  Google Scholar 

Giaume C, Venance L. Intercellular calcium signaling and gap junctional communication in astrocytes. Glia. 1998;24(1):50–64.

Article  CAS  PubMed  Google Scholar 

Rouach N, Glowinski J, Giaume C. Activity-dependent neuronal control of gap-junctional communication in astrocytes. J Cell Biol. 2000;149(7):1513–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamane Y, Shiga H, Asou H, Ito E. GAP junctional channel inhibition alters actin organization and calcium propagation in rat cultured astrocytes. Neuroscience. 2002;112(3):593–603.

Article  CAS  PubMed  Google Scholar 

Retamal MA, Cortes CJ, Reuss L, Bennett MVL, Saez JC. S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: Induction by oxidant stress and reversal by reducing agents. Proc Natl Acad Sci. 2006;103(12):4475–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sohl G. Gap junctions and the connexin protein family. Cardiovasc Res. 2004;62(2):228–32.

Article  PubMed  Google Scholar 

Sáez JC, Berthoud VM, Brañes MC, Martínez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev. 2003;83(4):1359–400.

Article  PubMed  Google Scholar 

Dosch M, Zindel J, Jebbawi F, Melin N, Sanchez-Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. Elife. 2019;8: e42670.

Article  PubMed  PubMed Central  Google Scholar 

Giaume C, Naus CC. Connexins, gap junctions, and glia. Wiley Interdiscip Rev Membr Transp Signal. 2013;2(4):133–42.

Article  CAS  Google Scholar 

Lapato AS, Tiwari-Woodruff SK. Connexins and pannexins: at the junction of neuro-glial homeostasis & disease. J Neurosci Res. 2018;96(1):31–44.

Article  CAS  PubMed  Google Scholar 

Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res. 2012;1487:88–98.

Article  CAS  PubMed  Google Scholar 

Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, et al. The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics. 2004;83(4):706–16.

留言 (0)

沒有登入
gif