Structural basis of closed groove scrambling by a TMEM16 protein

Whitlock, J. M. & Hartzell, H. C. Anoctamins/TMEM16 proteins: chloride channels flirting with lipids and extracellular vesicles. Annu Rev. Physiol. 10, 119–143 (2017).

Article  Google Scholar 

Bevers, E. M. & Williamson, P. L. Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol. Rev. 96, 605–645 (2016).

Article  CAS  PubMed  Google Scholar 

Sakuragi, T. & Nagata, S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-023-00604-z (2023).

Article  PubMed  PubMed Central  Google Scholar 

Suzuki, J., Umeda, M., Sims, P. J. & Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468, 834–838 (2010).

Article  CAS  PubMed  Google Scholar 

Malvezzi, M. et al. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel. Nat. Commun. 4, 2367 (2013).

Article  PubMed  Google Scholar 

Falzone, M., Malvezzi, M., Lee, B. C. & Accardi, A. Known structures and unknown mechanisms of TMEM16 scramblases and channels. JGP 150, 933–947 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brunner, J. D., Lim, N. K., Schenck, S., Duerst, A. & Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516, 207–212 (2014).

Article  CAS  PubMed  Google Scholar 

Suzuki, J., Denning, D. P., Imanishi, E., Horvitz, H. R. & Nagata, S. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science 341, 403–406 (2013).

Article  CAS  PubMed  Google Scholar 

Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020).

Article  CAS  PubMed  Google Scholar 

Maeda, S. et al. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat. Struct. Mol. Biol. 27, 1194–1201 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guardia, C. M. et al. Structure of Human ATG9A, the only transmembrane protein of the core autophagy machinery. Cell Rep. 31, 107837 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Menon, I. et al. Opsin is a phospholipid flippase. Curr. Biol. 21, 149–153 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jahn, H., Bartoš, L., Holthuis, J. C. M., Vácha, R. & Menon, A. K. Mitochondrial phospholipid import mediated by VDAC, a dimeric beta barrel scramblase. Nat. Commun. 14, 8115 (2023).

Anglin, T. C., Brown, K. L. & Conboy, J. C. Phospholipid flip-flop modulated by transmembrane peptides WALP and Melittin. J. Struct. Biol. 168, 37–52 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mihajlovic, M. & Lazaridis, T. Antimicrobial peptides in toroidal and cylindrical pores. Biochim. Biophys. Acta 1798, 1485–1493 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kol, M. A. et al. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition. Biochemistry 42, 231–237 (2003).

Article  CAS  PubMed  Google Scholar 

Falzone, M. E. et al. Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase. eLife 8, e43229 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Bushell, S. R. et al. The structural basis of lipid scrambling and inactivation in the endoplasmic reticulum scramblase TMEM16K. Nat. Commun. 10, 3956 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Feng, S. et al. Cryo-EM studies of TMEM16F calcium-activated ion channel suggest features important for lipid scrambling. Cell Rep. 28, 567–579 (2019).

Straub, M. S., Alvadia, C., Sawicka, M. & Dutzler, R. Cryo-EM structures of the caspase-activated protein XKR9 involved in apoptotic lipid scrambling. eLife 10, e69800 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalienkova, V. et al. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. eLife 8, e44364 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Alvadia, C. et al. Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F. eLife 8, e44365 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Pomorski, T. & Menon, A. K. Lipid flippases and their biological functions. Cell. Mol. Life Sci. 63, 2908–2921 (2006).

Article  CAS  PubMed  Google Scholar 

Bethel, N. P. & Grabe, M. Atomistic insight into lipid translocation by a TMEM16 scramblase. Proc. Natl Acad. Sci. USA 113, 14049–14054 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang, T., Yu, K., Hartzell, H. C. & Tajkhorshid, E. Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase. eLife 6, e28671 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Yu, K. et al. Identification of a lipid scrambling domain in ANO6/TMEM16F. eLife 4, 1–23 (2015).

Article  Google Scholar 

Lee, B. C. et al. Gating mechanism of the extracellular entry to the lipid pathway in a TMEM16 scramblase. Nat. Commun. 9, 3251 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kostritskii, A. Y. & Machtens, J.-P. Molecular mechanisms of ion conduction and ion selectivity in TMEM16 lipid scramblases. Nat. Commun. 12, 2826 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arndt, M. et al. Structural basis for the activation of the lipid scramblase TMEM16F. Nat. Commun. 13, 6692 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Falzone, M. E. et al. TMEM16 scramblases thin the membrane to enable lipid scrambling. Nat. Commun. 13, 2604 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, S. et al. Identification of a drug binding pocket in TMEM16F calcium-activated ion channel and lipid scramblase. Nat. Commun. 14, 4874 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia, Z., Huang, J. & Chen, J. Activation of TMEM16F by inner gate charged mutations and possible lipid/ion permeation mechanisms. Biophys. J. 121, 3445–3457 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khelashvili, G., Kots, E., Cheng, X., Levine, M. V. & Weinstein, H. The allosteric mechanism leading to an open-groove lipid conductive state of the TMEM16F scramblase. Commun. Biol. 5, 990 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ritchie, T. K., et al. Methods in Enzymology (Elsevier, 2009).

Grinkova, Y. V., Denisov, I. G. & Sligar, S. G. Engineering extended membrane scaffold proteins for self-assembly of soluble nanoscale lipid bilayers. Protein Eng. Des. Sel. 23, 843–848 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lim, N. K., Lam, A. K. M. & Dutzler, R. Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J. Gen. Physiol. 148, 375–392 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jeng, G., Aggarwal, M., Yu, W.-P. & Chen, T.-Y. Independent activation of distinct pores in dimeric TMEM16A channels. J. Gen. Physiol. 148, 393–404 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khelashvili, G. et al. Dynamic modulation of the lipid translocation groove generates a conductive ion channel in Ca2+-bound nhTMEM16. Nat. Commun. 10, 4972 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Lee, B.-C., Menon, AnantK. & Accardi, A. The nhTMEM16 scramblase is also a nonselective ion channel. Biophys. J. 111, 1919–1924 (2016).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif