The LexA–RecA* structure reveals a cryptic lock-and-key mechanism for SOS activation

Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

Article  CAS  PubMed  Google Scholar 

Culyba, M. J., Mo, C. Y. & Kohli, R. M. Targets for combating the evolution of acquired antibiotic resistance. Biochemistry 54, 3573–3582 (2015).

Article  CAS  PubMed  Google Scholar 

Pribis, J. P., Zhai, Y., Hastings, P. J. & Rosenberg, S. M. Stress-induced mutagenesis, gambler cells, and stealth targeting antibiotic-induced evolution. mBio 13, e0107422 (2022).

Article  PubMed  Google Scholar 

Maslowska, K. H., Makiela‐Dzbenska, K. & Fijalkowska, I. J. The SOS system: a complex and tightly regulated response to DNA damage. Environ. Mol. Mutagen. 60, 368–384 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Recacha, E. et al. Quinolone resistance reversion by targeting the SOS response. mBio 8, e00971-17 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Mo, C. Y. et al. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. mSphere 1, 163 (2016).

Article  Google Scholar 

Cirz, R. T. et al. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 3, e176 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Courcelle, J., Khodursky, A., Peter, B., Brown, P. O. & Hanawalt, P. C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bell, J. C. & Kowalczykowski, S. C. RecA: regulation and mechanism of a molecular search engine. Trends Biochem. Sci. 41, 491–507 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sankar, T. S., Wastuwidyaningtyas, B. D., Dong, Y., Lewis, S. A. & Wang, J. D. The nature of mutations induced by replication–transcription collisions. Nature 535, 178–181 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox, M. M. Regulation of bacterial RecA protein function. Crit. Rev. Biochem. Mol. Biol. 42, 41–63 (2007).

Article  CAS  PubMed  Google Scholar 

Butala, M., Zgur-Bertok, D. & Busby, S. J. The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66, 82–93 (2009).

Article  CAS  PubMed  Google Scholar 

Mo, C. Y., Birdwell, L. D. & Kohli, R. M. Specificity determinants for autoproteolysis of LexA, a key regulator of bacterial SOS mutagenesis. Biochemistry 53, 3158–3168 (2014).

Article  CAS  PubMed  Google Scholar 

Luo, Y. et al. Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106, 585–594 (2001).

Article  CAS  PubMed  Google Scholar 

Little, J. W. Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73, 411–421 (1991).

Article  CAS  PubMed  Google Scholar 

Butala, M. et al. Interconversion between bound and free conformations of LexA orchestrates the bacterial SOS response. Nucleic Acids Res. 39, 6546–6557 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neher, S. B., Flynn, J. M., Sauer, R. T. & Baker, T. A. Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev. 17, 1084–1089 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedman, N., Vardi, S., Ronen, M., Alon, U. & Stavans, J. Precise temporal modulation in the response of the SOS DNA repair network in individual bacteria. PLoS Biol. 3, e238 (2005).

Article  PubMed  PubMed Central  Google Scholar 

Culyba, M. J., Kubiak, J. M., Mo, C. Y., Goulian, M. & Kohli, R. M. Non-equilibrium repressor binding kinetics link DNA damage dose to transcriptional timing within the SOS gene network. PLoS Genet. 14, e1007405 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Naiman, K., Philippin, G., Fuchs, R. P. & Pagès, V. Chronology in lesion tolerance gives priority to genetic variability. Proc. Natl Acad. Sci. USA 111, 5526–5531 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs, R. P. Tolerance of lesions in E. coli: chronological competition between translesion synthesis and damage avoidance. DNA Repair 44, 51–58 (2016).

Article  CAS  PubMed  Google Scholar 

Merrikh, H. & Kohli, R. M. Targeting evolution to inhibit antibiotic resistance. FEBS J. 287, 4341–4353 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Podlesek, Z. & Žgur Bertok, D. The DNA damage inducible SOS response is a key player in the generation of bacterial persister cells and population wide tolerance. Front. Microbiol. 11, 1785 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Mo, C. Y. et al. Type III-A CRISPR immunity promotes mutagenesis of staphylococci. Nature 592, 611–615 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marx, P. et al. Environmental stress perception activates structural remodeling of extant Streptococcus mutans biofilms. NPJ Biofilms Microbiomes 6, 17 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soares, A., Alexandre, K. & Etienne, M. Tolerance and persistence of Pseudomonas aeruginosa in biofilms exposed to antibiotics: molecular mechanisms, antibiotic strategies and therapeutic perspectives. Front. Microbiol. 11, 2057 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Chen, Z., Yang, H. & Pavletich, N. P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453, 489–494 (2008).

Article  CAS  PubMed  Google Scholar 

Adikesavan, A. K. et al. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet. 7, e1002244 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovacic, L. et al. Structural insight into LexA–RecA* interaction. Nucleic Acids Res. 41, 9901–9910 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cory, M. B. et al. Engineered RecA constructs reveal the minimal SOS activation complex. Biochemistry 61, 2884–2896 (2022).

Article  CAS  PubMed  Google Scholar 

Yu, X. & Egelman, E. H. The LexA repressor binds within the deep helical groove of the activated RecA filament. J. Mol. Biol. 231, 29–40 (1993).

Article  CAS  PubMed  Google Scholar 

Gao, B. et al. Structural basis for regulation of SOS response in bacteria. Proc. Natl Acad. Sci. USA 120, e2217493120 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Egelman, E. H. & Stasiak, A. Structure of helical RecA–DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP. J. Mol. Biol. 191, 677–697 (1986).

Article  CAS  PubMed  Google Scholar 

Giese, K. C., Michalowski, C. B. & Little, J. W. RecA-dependent cleavage of LexA dimers. J. Mol. Biol. 377, 148–161 (2008).

Article  CAS  PubMed  Google Scholar 

Hostetler, Z. M., Cory, M. B., Jones, C. M., Petersson, E. J. & Kohli, R. M. The kinetic and molecular basis for the interaction of LexA and activated RecA revealed by a fluorescent amino acid probe. ACS Chem. Biol. 15, 1127–1133 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, A. P., Pigli, Y. Z. & Rice, P. A. Structure of the LexA–DNA complex and implications for SOS box measurement. Nature 466, 883–886 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif