Cryo-EM structure of the Rev1–Polζ holocomplex reveals the mechanism of their cooperativity in translesion DNA synthesis

Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S. & Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 406, 1015–1019 (2000).

Article  CAS  PubMed  Google Scholar 

Jain, R., Aggarwal, A. K. & Rechkoblit, O. Eukaryotic DNA polymerases. Curr. Opin. Struct. Biol. 53, 77–87 (2018).

Article  CAS  PubMed  Google Scholar 

Prakash, S., Johnson, R. E. & Prakash, L. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem. 74, 317–353 (2005).

Article  CAS  PubMed  Google Scholar 

Johnson, R. E., Prakash, L. & Prakash, S. Pol31 and Pol32 subunits of yeast DNA polymerase ẟ are also essential subunits of DNA polymerase ζ. Proc. Natl Acad. Sci. USA 109, 12455–12460 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makarova, A. V., Stodola, J. L. & Burgers, P. M. A four-subunit DNA polymerase ζ complex containing Pol ẟ accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res. 40, 11618–11626 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Makarova, A. V. & Burgers, P. M. Eukaryotic DNA polymerase ζ. DNA Repair (Amst.) 29, 47–55 (2015).

Article  CAS  PubMed  Google Scholar 

Lange, S. S., Takata, K. & Wood, R. D. DNA polymerases and cancer. Nat. Rev. Cancer 11, 96–110 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson, J. R., Lawrence, C. W. & Hinkle, D. C. Thymine–thymine dimer bypass by yeast DNA polymerase ζ. Science 272, 1646–1649 (1996).

Article  CAS  PubMed  Google Scholar 

Malik, R. et al. Cryo-EM structure of translesion DNA synthesis polymerase ζ with a base pair mismatch. Nat. Commun. 13, 1050 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malik, R. et al. Structure and mechanism of B-family DNA polymerase ζ specialized for translesion DNA synthesis. Nat. Struct. Mol. Biol. 27, 913–924 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hashimoto, K. et al. The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[a]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site. J. Biol. Chem. 287, 9613–9622 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Doles, J. et al. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl Acad. Sci. USA 107, 20786–20791 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, K., Doles, J., Hemann, M. T. & Walker, G. C. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl Acad. Sci. USA 107, 20792–20797 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu, X. et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl Acad. Sci. USA 110, 18638–18643 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nelson, J. R., Lawrence, C. W. & Hinkle, D. C. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382, 729–731 (1996).

Article  CAS  PubMed  Google Scholar 

Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. Rev1 employs a novel mechanism of DNA synthesis using a protein template. Science 309, 2219–2222 (2005).

Article  CAS  PubMed  Google Scholar 

Guo, C. et al. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22, 6621–6630 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohashi, E. et al. Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9, 523–531 (2004).

Article  CAS  PubMed  Google Scholar 

Tissier, A. et al. Co-localization in replication foci and interaction of human Y-family members, DNA polymerase polη and REV1 protein. DNA Repair 3, 1503–1514 (2004).

Article  CAS  PubMed  Google Scholar 

Haracska, L. et al. Roles of yeast DNA polymerases ẟ and ζ and of Rev1 in the bypass of abasic sites. Genes Dev. 15, 945–954 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pozhidaeva, A. et al. NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η. Biochemistry 51, 5506–5520 (2012).

Article  CAS  PubMed  Google Scholar 

Xie, W., Yang, X., Xu, M. & Jiang, T. Structural insights into the assembly of human translesion polymerase complexes. Protein Cell 3, 864–874 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wojtaszek, J. et al. Multifaceted recognition of vertebrate Rev1 by translesion polymerases ζ and ϰ. J. Biol. Chem. 287, 26400–26408 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Futreal, P. A. et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122 (1994).

Article  CAS  PubMed  Google Scholar 

Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

Article  CAS  PubMed  Google Scholar 

Callebaut, I. & Mornon, J. P. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400, 25–30 (1997).

Article  CAS  PubMed  Google Scholar 

Bork, P. et al. A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins. FASEB J. 11, 68–76 (1997).

Article  CAS  PubMed  Google Scholar 

Manke, I. A., Lowery, D. M., Nguyen, A. & Yaffe, M. B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639 (2003).

Article  CAS  PubMed  Google Scholar 

Yu, X., Chini, C. C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science 302, 639–642 (2003).

Article  CAS  PubMed  Google Scholar 

Lawrence, C. W. Cellular functions of DNA polymerase ζ and Rev1 protein. Adv. Protein Chem. 69, 167–203 (2004).

Article  CAS  PubMed  Google Scholar 

Guo, C. et al. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol. Cell 23, 265–271 (2006).

Article  CAS  PubMed  Google Scholar 

Kobayashi, M., Figaroa, F., Meeuwenoord, N., Jansen, L. E. & Siegal, G. Characterization of the DNA binding and structural properties of the BRCT region of human replication factor C p140 subunit. J. Biol. Chem. 281, 4308–4317 (2006).

Article  CAS  PubMed  Google Scholar 

de Groote, F. H. et al. The Rev1 translesion synthesis polymerase has multiple distinct DNA binding modes. DNA Repair (Amst.) 10, 915–925 (2011).

Article  PubMed  Google Scholar 

Kochenova, O. V. et al. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res. 45, 1200–1218 (2017).

Article  CAS  PubMed  Google Scholar 

Pages, V. et al. Requirement of Rad5 for DNA polymerase ζ-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180, 73–82 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuang, L. et al. A non-catalytic function of Rev1 in translesion DNA synthesis and mutagenesis is mediated by its stable interaction with Rad5. DNA Repair (Amst.) 12, 27–37 (2013).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif