Enhanced cellular therapy: revolutionizing adoptive cellular therapy

Kast F, Klein C, Umaña P, Gros A, Gasser S. Advances in identification and selection of personalized neoantigen/T-cell pairs for autologous adoptive T cell therapies. Oncoimmunology. 2021;10(1):1869389.

Article  PubMed  PubMed Central  Google Scholar 

Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823–41.

Article  CAS  PubMed  Google Scholar 

Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med. 1985;313(23):1485–92.

Article  CAS  PubMed  Google Scholar 

Cappuzzello E, Sommaggio R, Zanovello P, Rosato A. Cytokines for the induction of antitumor effectors: the paradigm of Cytokine-Induced Killer (CIK) cells. Cytokine Growth Factor Rev. 2017;36:99–105.

Article  CAS  PubMed  Google Scholar 

Wang S, Wang X, Zhou X, Lyerly HK, Morse MA, Ren J. DC-CIK as a widely applicable cancer immunotherapy. Expert Opin Biol Ther. 2020;20(6):601–7.

Article  PubMed  Google Scholar 

Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science (New York, NY). 1986;233(4770):1318–21.

Article  CAS  Google Scholar 

Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

Article  CAS  PubMed  Google Scholar 

Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol. 2022;11(1):3.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bach PB, Giralt SA, Saltz LB. FDA approval of tisagenlecleucel: promise and complexities of a $475 000 cancer drug. JAMA. 2017;318(19):1861–2.

Article  PubMed  Google Scholar 

Sharma A, Schmidt-Wolf IGH. 30 years of CIK cell therapy: recapitulating the key breakthroughs and future perspective. J Exp Clin Cancer Res CR. 2021;40(1):388.

Article  PubMed  Google Scholar 

Yu JX, Upadhaya S, Tatake R, Barkalow F, Hubbard-Lucey VM. Cancer cell therapies: the clinical trial landscape. Nat Rev Drug Discovery. 2020;19(9):583–4.

Article  CAS  PubMed  Google Scholar 

Upadhaya S, Yu JX, Shah M, Correa D, Partridge T, Campbell J. The clinical pipeline for cancer cell therapies. Nat Rev Drug Discovery. 2021;20(7):503–4.

Article  CAS  PubMed  Google Scholar 

Saez-Ibañez AR, Upadhaya S, Partridge T, Shah M, Correa D, Campbell J. Landscape of cancer cell therapies: trends and real-world data. Nat Rev Drug Discovery. 2022;21(9):631–2.

Article  PubMed  Google Scholar 

Wang LL, Janes ME, Kumbhojkar N, Kapate N, Clegg JR, Prakash S, et al. Cell therapies in the clinic. Bioeng Transl Med. 2021;6(2): e10214.

Article  PubMed  PubMed Central  Google Scholar 

Till BG, Jensen MC, Wang J, Chen EY, Wood BL, Greisman HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112(6):2261–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xu J, Luo W, Li C, Mei H. Targeting CD22 for B-cell hematologic malignancies. Exp Hematol Oncol. 2023;12(1):90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aparicio C, Acebal C, González-Vallinas M. Current approaches to develop “off-the-shelf” chimeric antigen receptor (CAR)-T cells for cancer treatment: a systematic review. Exp Hematol Oncol. 2023;12(1):73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peterson C, Denlinger N, Yang Y. Recent advances and challenges in cancer immunotherapy. Cancers. 2022;14(16):3972.

Article  CAS  PubMed  PubMed Central  Google Scholar 

The LO. CAR T-cell therapy for solid tumours. Lancet Oncol. 2021;22(7):893.

Article  Google Scholar 

Liu Z, Xu X, Liu H, Zhao X, Yang C, Fu R. Immune checkpoint inhibitors for multiple myeloma immunotherapy. Exp Hematol Oncol. 2023;12(1):99.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shibru B, Fey K, Fricke S, Blaudszun AR, Fürst F, Weise M, et al. Detection of Immune checkpoint receptors—a current challenge in clinical flow cytometry. Front Immunol. 2021;12: 694055.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.

Article  CAS  PubMed  Google Scholar 

Doroshow DB, Bhalla S, Beasley MB, Sholl LM, Kerr KM, Gnjatic S, et al. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2021;18(6):345–62.

Article  CAS  PubMed  Google Scholar 

Dai M, Liu M, Yang H, Küçük C, You H. New insights into epigenetic regulation of resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms and therapeutic opportunities. Exp Hematol Oncol. 2022;11(1):101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huo JL, Wang YT, Fu WJ, Lu N, Liu ZS. The promising immune checkpoint LAG-3 in cancer immunotherapy: from basic research to clinical application. Front Immunol. 2022;13: 956090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paik J. Nivolumab plus relatlimab: first approval. Drugs. 2022;82(8):925–31.

Article  CAS  PubMed  Google Scholar 

Schoenfeld AJ, Hellmann MD. Acquired resistance to immune checkpoint inhibitors. Cancer Cell. 2020;37(4):443–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current progress in CAR-T cell therapy for solid tumors. Int J Biol Sci. 2019;15(12):2548–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8 (+) T cells differentially mediate tumor control and respond to checkpoint blockade. Nat Immunol. 2019;20(3):326–36.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mehrabadi AZ, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Hamidinejad MA, et al. Therapeutic potential of CAR T cell in malignancies: a scoping review. Biomed Pharmacother Biomedecine Pharmacotherapie. 2022;146:112512.

Article  CAS  PubMed  Google Scholar 

Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021;14(1):156.

Article  PubMed  PubMed Central  Google Scholar 

John LB, Kershaw MH, Darcy PK. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology. 2013;2(10): e26286.

Article  PubMed  PubMed Central  Google Scholar 

Bernabei L, Tian L, Garfall AL, Melenhorst JJ, Lacey SF, Stadtmauer EA, et al. B-cell maturation antigen chimeric antigen receptor T-cell re-expansion in a patient with myeloma following salvage programmed cell death protein 1 inhibitor-based combination therapy. Br J Haematol. 2021;193(4):851–5.

Article  CAS  PubMed  Google Scholar 

Bajor M, Graczyk-Jarzynka A, Marhelava K, Burdzinska A, Muchowicz A, Goral A, et al. PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. J Immunother Cancer. 2022;10(1):e002500.

Article  PubMed  PubMed Central  Google Scholar 

Srivastava S, Furlan SN, Jaeger-Ruckstuhl CA, Sarvothama M, Berger C, Smythe KS, et al. Immunogenic chemotherapy enhances recruitment of CAR-T cells to lung tumors and improves antitumor efficacy when combined with checkpoint blockade. Cancer Cell. 2021;39(2):193-208.e10.

Article 

留言 (0)

沒有登入
gif