Precision Cardio-oncology: Update on Omics-Based Diagnostic Methods

Brenner H, Schrotz-King P, Holleczek B, Katalinic A, Hoffmeister M. Declining bowel cancer incidence and mortality in Germany. Dtsch Arztebl Int. 2016;113:101–6. https://doi.org/10.3238/arztebl.2016.0101.

Article  PubMed  PubMed Central  Google Scholar 

Wakabayashi G, Lee Y-C, Luh F, Kuo C-N, Chang W-C, Yen Y. Development and clinical applications of cancer immunotherapy against PD-1 signaling pathway. J Biomed Sci. 2019;26:96. https://doi.org/10.1186/s12929-019-0588-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou S, Cirne F, Chow J, Zereshkian A, Bordeleau L, Dhesy-Thind S, Ellis PM, Mukherjee SD, Aghel N, Leong DP. Three-year outcomes following permissive cardiotoxicity in patients on trastuzumab. Oncologist. 2023;28(9):e712–22. https://doi.org/10.1093/oncolo/oyad086.

Article  PubMed  PubMed Central  Google Scholar 

Yan T, Yu L, Zhang J, Chen Y, Fu Y, Tang J, Liao D. Achilles’ Heel of currently approved immune checkpoint inhibitors: immune related adverse events. Front Immunol. 2024;12(15):1292122. https://doi.org/10.3389/fimmu.2024.1292122.PMID:38410506;PMCID:PMC10895024.

Article  Google Scholar 

Herrmann J. Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol. 2020;17:474–502. https://doi.org/10.1038/s41569-020-0348-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chinese Anti-Cancer Association Society of Integrative Cardio-oncology; Ultrasound Branch of the Chinese Medical Association; Chinese Society of Echocardiography. [Chinese guideline for the clinical application of noninvasive imaging technology in accessing cancer therapy-related cardiovascular toxicity (2023 edition)]. Zhonghua Yi Xue Za Zhi. 2023;103(42):3367–83. Chinese. https://doi.org/10.3760/cma.j.cn112137-20230908-00428.

• Herrmann J, Lenihan D, Armenian S, Barac A, Blaes A, Cardinale D, et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J. 2022;43:280–99. https://doi.org/10.1093/eurheartj/ehab674. This reference is of importance because it is a consensus statement of the International Cardio-Oncology Society (IC-OS) and a very authoritative consensus.

Article  PubMed  Google Scholar 

•• Lyon AR, López-Fernández T, Couch LS, Asteggiano R, Aznar MC, Bergler-Klein J, et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022;43:4229–361. https://doi.org/10.1093/eurheartj/ehac244. This reference is of outstanding importance because it is a consensus statement of the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO), and the International Cardio-Oncology Society (IC-OS) and a very authoritative consensus.

Article  PubMed  Google Scholar 

Fradley MG, Beckie TM, Brown SA, Cheng RK, Dent SF, Nohria A, et al. Recognition, prevention, and management of arrhythmias and autonomic disorders in cardio-oncology: a scientific statement from the American Heart Association. Circulation. 2021;144:e41–55. https://doi.org/10.1161/CIR.0000000000000986.

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother. 2022;156:113903. https://doi.org/10.1016/j.biopha.2022.113903.

Article  CAS  PubMed  Google Scholar 

Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–84. https://doi.org/10.1056/NEJM200004133421502.

Article  CAS  PubMed  Google Scholar 

Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation. 2015;131:1981–8. https://doi.org/10.1161/CIRCULATIONAHA.114.013777.

Article  CAS  PubMed  Google Scholar 

Wu L, Wang L, Du Y, Zhang Y, Ren J. Mitochondrial quality control mechanisms as therapeutic targets in doxorubicin-induced cardiotoxicity. Trends Pharmacol Sci. 2023;44:34–49. https://doi.org/10.1016/j.tips.2022.10.003.

Article  CAS  PubMed  Google Scholar 

Kong C-Y, Guo Z, Song P, Zhang X, Yuan Y-P, Teng T, et al. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: oxidative stress and cell death. Int J Biol Sci. 2022;18:760–70. https://doi.org/10.7150/ijbs.65258.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moslehi JJ, Salem J-E, Sosman JA, Lebrun-Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor-associated myocarditis. Lancet. 2018;391:933. https://doi.org/10.1016/S0140-6736(18)30533-6.

Article  PubMed  PubMed Central  Google Scholar 

Guo S, Tse G, Liu T. Protective strategies to prevent trastuzumab-induced cardiotoxicity. Lancet. 2020;395:491–2. https://doi.org/10.1016/S0140-6736(19)32549-8.

Article  PubMed  Google Scholar 

Keefe DL. Trastuzumab-associated cardiotoxicity. Cancer. 2002;95:1592–600. https://doi.org/10.1002/cncr.10854.

Article  CAS  PubMed  Google Scholar 

Anjos M, Fontes-Oliveira M, Costa VM, Santos M, Ferreira R. An update of the molecular mechanisms underlying doxorubicin plus trastuzumab induced cardiotoxicity. Life Sci. 2021;280:119760. https://doi.org/10.1016/j.lfs.2021.119760.

Article  CAS  PubMed  Google Scholar 

An J, Sheikh MS. Toxicology of Trastuzumab: an insight into mechanisms of cardiotoxicity. Curr Cancer Drug Targets. 2019;19:400–7. https://doi.org/10.2174/1568009618666171129222159.

Article  CAS  PubMed  Google Scholar 

Tan S, Day D, Nicholls SJ, Segelov E. Immune checkpoint inhibitor therapy in oncology: current uses and future directions: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2022;4:579–97. https://doi.org/10.1016/j.jaccao.2022.09.004.

Article  PubMed  PubMed Central  Google Scholar 

Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71:1755–64. https://doi.org/10.1016/j.jacc.2018.02.037.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55. https://doi.org/10.1016/j.blre.2018.11.002.

Article  CAS  PubMed  Google Scholar 

Chew DS, Wilton SB, Kavanagh K, Southern DA, Tan-Mesiatowsky LE, Exner DV, et al. Left ventricular ejection fraction reassessment post-myocardial infarction: current clinical practice and determinants of adverse remodeling. Am Heart J. 2018;198:91–6. https://doi.org/10.1016/j.ahj.2017.11.014.

Article  PubMed  Google Scholar 

Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122:1302–15. https://doi.org/10.1161/CIRCRESAHA.117.310782.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanno S-I, Hara A. The mRNA expression of Il6 and Pdcd1 are predictive and protective factors for doxorubicin-induced cardiotoxicity. Mol Med Rep. 2021;23:113. https://doi.org/10.3892/mmr.2020.11752.

Article  CAS  PubMed  Google Scholar 

Triposkiadis F, Xanthopoulos A, Parissis J, Butler J, Farmakis D. Pathogenesis of chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail Rev. 2022;27:337–44. https://doi.org/10.1007/s10741-020-09987-z.

Article  PubMed  Google Scholar 

Pinheiro EA, Fetterman KA, Burridge PW. hiPSCs in cardio-oncology: deciphering the genomics. Cardiovasc Res. 2019;115:935–48. https://doi.org/10.1093/cvr/cvz018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2021;18:235–50. https://doi.org/10.1038/s41569-020-00466-4.

Article  CAS  PubMed  Google Scholar 

Magdy T, Schuldt AJT, Wu JC, Bernstein D, Burridge PW. Human induced pluripotent stem cell (hiPSC)-derived cells to assess drug cardiotoxicity: opportunities and problems. Annu Rev Pharmacol Toxicol. 2018;58:83–103. https://doi.org/10.1146/annurev-pharmtox-010617-053110.

Article  CAS  PubMed  Google Scholar 

Magdy T, Burmeister BT, Burridge PW. Validating the pharmacogenomics of chemotherapy-induced cardiotoxicity: what is missing? Pharmacol Ther. 2016;168:113–25. https://doi.org/10.1016/j.pharmthera.2016.09.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Magdy T, Jouni M, Kuo H-H, Weddle CJ, Lyra-Leite D, Fonoudi H, et al. Identification of drug transporter genomic variants and inhibitors that protect against doxorubicin-induced cardiotoxicity. Circulation. 2022;145:279–94. https://doi.org/10.1161/CIRCULATIONAHA.121.055801.

Article  CAS  PubMed  Google Scholar 

Magdy T, Jiang Z, Jouni M, Fonoudi H, Lyra-Leite D, Jung G, et al. RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy. Cell Stem Cell. 2021;28:2076-2089.e7. https://doi.org/10.1016/j.stem.2021.08.006.

Article  CAS  PubMed  Google Scholar 

Muckiene G, Vaitiekus D, Zaliaduonyte D, Bartnykaite A, Plisiene J, Zabiela V, et al. The impact of polymorphisms in ATP-binding cassette transporter genes on anthracycline-induced early cardiotoxicity in patients with breast cancer. J Cardiovasc Dev Dis. 2023;10:232. https://doi.org/10.3390/jcdd10060232.

留言 (0)

沒有登入
gif