Evaluation of culture methods and chemical reagent combinations on CRISPR/Cas9 gene editing systems by lipofection in pig zygotes

Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42(22):e168. https://doi.org/10.1093/nar/gku936

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burkard C, Lillico SG, Reid E, Jackson B, Mileham AJ, Ait-Ali T, Whitelaw CBA, Archibald AL (2017) Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog 13(2):e1006206. https://doi.org/10.1371/journal.ppat.1006206

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carboni V, Maaliki C, Alyami M, Alsaiari S, Khashab N (2019) Synthetic vehicles for encapsulation and delivery of CRISPR/Cas9 gene editing machinery. Adv Ther 2(4). https://doi.org/10.1002/adtp.201800085

Chen K, Jiang S, Hong Y, Li Z, Wu Y-L, Wu C (2019) Cationic polymeric nanoformulation: recent advances in material design for CRISPR/Cas9 gene therapy. Prog Nat Sci: Mater Int 29(6):617–627. https://doi.org/10.1016/j.pnsc.2019.10.003

Article  CAS  Google Scholar 

Eyestone W, Adams K, Ball S, Bianchi J, Butler S, Dandro A, Kuravi K, Kokkinaki M, Fazio AL, Monahan J (2020) Gene-edited pigs for xenotransplantation. In Clinical xenotransplantation: pathways and progress in the transplantation of organs and tissues between species. Springer, pp. 121–140. https://doi.org/10.1007/978-3-030-49127-77

Grant-Serroukh D, Hunter MR, Maeshima R, Tagalakis AD, Aldossary AM, Allahham N, Williams GR, Edbrooke M, Desai A, Hart SL (2022) Lipid-peptide nanocomplexes for mRNA delivery in vitro and in vivo. J Controlled Release 348:786–797. https://doi.org/10.1016/j.jconrel.2022.06.018

Article  CAS  Google Scholar 

Hirata M, Wittayarat M, Namula Z, Anh Le Q, Lin Q, Takebayashi K, Thongkittidilok C, Tanihara F, Otoi T (2021a) Lipofection-mediated introduction of CRISPR/Cas9 system into porcine oocytes and embryos. Animals 11(2):578. https://www.mdpi.com/2076-2615/11/2/578

Hirata M, Wittayarat M, Namula Z, Le QA, Lin Q, Takebayashi K, Thongkittidilok C, Mito T, Tomonari S, Tanihara F (2021b) Generation of mutant pigs by lipofection-mediated genome editing in embryos. Sci Rep 11(1):23806. https://doi.org/10.1038/s41598-021-03325-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hou N, Du X, Wu S (2022) Advances in pig models of human diseases. Animal Model Exp Med 5(2):141–152. https://doi.org/10.1002/ame2.12223

Article  PubMed  PubMed Central  Google Scholar 

Hryhorowicz M, Lipinski D, Hryhorowicz S, Nowak-Terpilowska A, Ryczek N, Zeyland J (2020) Application of genetically engineered pigs in biomedical research. Genes (Basel) 11(6). https://doi.org/10.3390/genes11060670

Kumar R, Le N, Tan Z, Brown ME, Jiang S, Reineke TM (2020) Efficient polymer-mediated delivery of gene-editing ribonucleoprotein payloads through combinatorial design, parallelized experimentation, and machine learning. ACS Nano 14(12):17626–17639. https://doi.org/10.1021/acsnano.0c08549

Article  CAS  PubMed  Google Scholar 

Lane M, Gardner DK (1995) Removal of embryo-toxic ammonium from the culture medium by in situ enzymatic conversion to glutamate. J Exp Zool 271(5):356–363. https://doi.org/10.1002/jez.1402710505

Article  CAS  PubMed  Google Scholar 

Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A (2006) Sperm-mediated gene transfer. Reprod Fertil Dev 18(1–2):19–23. https://doi.org/10.1071/rd05124

Article  CAS  PubMed  Google Scholar 

Le QA, Tanihara F, Wittayarat M, Namula Z, Sato Y, Lin Q, Takebayashi K, Hirata M, Otoi T (2021) Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Res Notes 14(1):7. https://doi.org/10.1186/s13104-020-05412-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Q, Aihara M, Shirai A, Tanaka A, Takebayashi K, Yoshimura N, Torigoe N, Nagahara M, Minamikawa T, Otoi T (2023a) Porcine embryo development and inactivation of microorganisms after ultraviolet-C irradiation at 228 nm. Theriogenology 197:252–258. https://doi.org/10.1016/j.theriogenology.2022.12.015

Article  CAS  PubMed  Google Scholar 

Lin Q, Le QA, Takebayashi K, Thongkittidilok C, Wittayarat M, Hirata M, Tanihara F, Otoi T (2021) Timing and duration of lipofection-mediated CRISPR/Cas9 delivery into porcine zygotes affect gene-editing events. BMC Res Notes 14(1):389. https://doi.org/10.1186/s13104-021-05800-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin Q, Takebayashi K, Torigoe N, Liu B, Namula Z, Hirata M, Tanihara F, Nagahara M, Otoi T (2023b) Comparison of chemically mediated CRISPR/Cas9 gene editing systems using different nonviral vectors in porcine embryos. Anim Sci J 94(1):e13878. https://doi.org/10.1111/asj.13878

Article  CAS  PubMed  Google Scholar 

Lossi L, D’Angelo L, De Girolamo P, Merighi A (2016) Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Ann Anat 204:11–28. https://doi.org/10.1016/j.aanat.2015.10.002

Article  PubMed  Google Scholar 

Mikheev AA, Shmendel EV, Shmendel ES, Nazarov GV, Maslov MA (2020) Cationic liposomes as delivery systems for nucleic acids. Fine Chem Technol 15(1):7–27. https://doi.org/10.32362/2410-6593-2020-15-1-7-27

Moro LN, Hiriart MI, Buemo C, Jarazo J, Sestelo A, Veraguas D, Rodriguez-Alvarez L, Salamone DF (2015) Cheetah interspecific SCNT followed by embryo aggregation improves in vitro development but not pluripotent gene expression. Reproduction 150(1):1–10. https://doi.org/10.1530/REP-15-0048

Article  CAS  PubMed  Google Scholar 

Piñeiro-Silva C, Navarro-Serna S, Belda-Pérez R, Gadea J (2023) Production of genetically modified porcine embryos via lipofection of zona-pellucida-intact oocytes using the CRISPR/Cas9 system. Animals 13(3):342. https://www.mdpi.com/2076-2615/13/3/342

Ryu N, Kim MA, Park D, Lee B, Kim YR, Kim KH, Baek JI, Kim WJ, Lee KY, Kim UK (2018) Effective PEI-mediated delivery of CRISPR-Cas9 complex for targeted gene therapy. Nanomedicine 14(7):2095–2102. https://doi.org/10.1016/j.nano.2018.06.009

Article  CAS  PubMed  Google Scholar 

Taka M, Iwayama H, Fukui Y (2005) Effect of the well of the well (WOW) system on in vitro culture for porcine embryos after intracytoplasmic sperm injection. J Reprod Dev 51(4):533–537. https://doi.org/10.1262/jrd.17005

Article  PubMed  Google Scholar 

Takebayashi K, Wittayarat M, Lin Q, Hirata M, Yoshimura N, Torigoe N, Nagahara M, Do LTK, Tanihara F, Otoi T (2022) Gene editing in porcine embryos using a combination of electroporation and transfection methods. Reprod Domest Anim 57(10):1136–1142. https://doi.org/10.1111/rda.14184

Article  CAS  PubMed  Google Scholar 

Tanihara F, Takemoto T, Kitagawa E, Rao S, Do LTK, Onishi A, Yamashita Y, Kosugi C, Suzuki H, Sembon S, Suzuki S, Nakai M, Hashimoto M, Yasue A, Matsuhisa M, Noji S, Fujimura T, Fuchimoto D-I, Otoi T (2016) Somatic cell reprogramming-free generation of genetically modified pigs. Sci Adv 2(9):e1600803. https://doi.org/10.1126/sciadv.1600803

Article  CAS  PubMed  PubMed Central  Google Scholar 

Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GGM (2003) Cell transfection <i>in vitro</i> and <i>in vivo</i> with nontoxic TAT peptide-liposome DNA complexes. Proc Nat Acad Sci 100(4):1972–1977. https://doi.org/10.1073/pnas.0435906100

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang H, Shen L, Chen J, Liu X, Tan T, Hu Y, Bai X, Li Y, Tian K, Li N, Hu X (2019) Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs. Int J Biol Sci 15(9):1993–2005. https://doi.org/10.7150/ijbs.34269

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang T, Larcher LM, Ma L, Veedu RN (2018) Systematic screening of commonly used commercial transfection reagents towards efficient transfection of single-stranded oligonucleotides. Molecules 23(10). https://doi.org/10.3390/molecules23102564

留言 (0)

沒有登入
gif