Receptor-recognition and antiviral mechanisms of retrovirus-derived human proteins

Robbins, J. R. & Bakardjiev, A. I. Pathogens and the placental fortress. Curr. Opin. Microbiol. 15, 36–43 (2012).

Article  PubMed  Google Scholar 

Mi, S. et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785–789 (2000).

Article  CAS  PubMed  Google Scholar 

Blond, J. L. et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74, 3321–3329 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mallet, F. et al. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc. Natl Acad. Sci. USA 101, 1731–1736 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lavialle, C. et al. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120507 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Blond, J. L. et al. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73, 1175–1185 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langbein, M. et al. Impaired cytotrophoblast cell–cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol. Reprod. Dev. 75, 175–183 (2008).

Article  PubMed  Google Scholar 

Lee, X. et al. Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta 22, 808–812 (2001).

Article  CAS  PubMed  Google Scholar 

Bolze, P. A., Mommert, M. & Mallet, F. Contribution of syncytins and other endogenous retroviral envelopes to human placenta pathologies. Prog. Mol. Biol. Transl. Sci. 145, 111–162 (2017).

Article  CAS  PubMed  Google Scholar 

Cheynet, V. et al. Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope. J. Virol. 79, 5585–5593 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, C., Chen, P. T., Chang, G. D., Huang, C. J. & Chen, H. Functional characterization of the placental fusogenic membrane protein syncytin. Biol. Reprod. 71, 1956–1962 (2004).

Article  CAS  PubMed  Google Scholar 

Lavillette, D. et al. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J. Virol. 76, 6442–6452 (2002).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hogan, V. & Johnson, W. E. Unique structure and distinctive properties of the ancient and ubiquitous gamma-type envelope glycoprotein. Viruses 15, 274 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henzy, J. E. & Johnson, W. E. Pushing the endogenous envelope. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120506 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Ruigrok, K. et al. X-ray structures of the post-fusion 6-helix bundle of the human syncytins and their functional implications. J. Mol. Biol. 431, 4922–4940 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugimoto, J., Sugimoto, M., Bernstein, H., Jinno, Y. & Schust, D. A novel human endogenous retroviral protein inhibits cell–cell fusion. Sci. Rep. 3, 1462 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Sugimoto, J. et al. Suppressyn localization and dynamic expression patterns in primary human tissues support a physiologic role in human placentation. Sci. Rep. 9, 19502 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sugimoto, J. et al. Could the human endogenous retrovirus-derived syncytialization inhibitor, suppressyn, limit heterotypic cell fusion events in the decidua? Int. J. Mol. Sci. 22, 10259 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rasko, J. E., Battini, J. L., Gottschalk, R. J., Mazo, I. & Miller, A. D. The RD114/simian type D retrovirus receptor is a neutral amino acid transporter. Proc. Natl Acad. Sci. USA 96, 2129–2134 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tailor, C. S., Nouri, A., Zhao, Y., Takeuchi, Y. & Kabat, D. A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J. Virol. 73, 4470–4474 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sommerfelt, M. A. & Weiss, R. A. Receptor interference groups of 20 retroviruses plating on human cells. Virology 176, 58–69 (1990).

Article  CAS  PubMed  Google Scholar 

Ponferrada, V. G., Mauck, B. S. & Wooley, D. P. The envelope glycoprotein of human endogenous retrovirus HERV-W induces cellular resistance to spleen necrosis virus. Arch. Virol. 148, 659–675 (2003).

Article  CAS  PubMed  Google Scholar 

Sinha, A. & Johnson, W. E. Retroviruses of the RDR superinfection interference group: ancient origins and broad host distribution of a promiscuous Env gene. Curr. Opin. Virol. 25, 105–112 (2017).

Article  CAS  PubMed  Google Scholar 

Stromberg, K. et al. Characterization of exogenous type D retrovirus from a fibroma of a macaque with simian AIDS and fibromatosis. Science 224, 289–282 (1984).

Article  CAS  PubMed  Google Scholar 

Daniel, M. D. et al. A new type D retrovirus isolated from macaques with an immunodeficiency syndrome. Science 223, 602–605 (1984).

Article  CAS  PubMed  Google Scholar 

Grange, Z. L. et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc. Natl Acad. Sci. USA 118, e2002324118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wozniakowski, G., Frant, M. & Mamczur, A. Avian reticuloendotheliosis in chickens—an update on disease occurrence and clinical course. J. Veterin. Res. 62, 257–260 (2018).

Article  Google Scholar 

Cheynet, V., Oriol, G. & Mallet, F. Identification of the hASCT2-binding domain of the Env ERVWE1/syncytin-1 fusogenic glycoprotein. Retrovirology 3, 41 (2006).

Article  PubMed  PubMed Central  Google Scholar 

Frank, J. A. et al. Evolution and antiviral activity of a human protein of retroviral origin. Science 378, 422–428 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kanai, Y. et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol. Asp. Med 34, 108–120 (2013).

Article  CAS  Google Scholar 

Wahi, K. & Holst, J. ASCT2: a potential cancer drug target. Expert Opin. Ther. Targets 23, 555–558 (2019).

Article  CAS  PubMed  Google Scholar 

Liu, Y. et al. The role of ASCT2 in cancer: a review. Eur. J. Pharmacol. 837, 81–87 (2018).

Article  CAS  PubMed  Google Scholar 

Garaeva, A. A. et al. Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat. Struct. Mol. Biol. 25, 515–521 (2018).

Article  CAS  PubMed  Google Scholar 

Yu, X. et al. Cryo-EM structures of the human glutamine transporter SLC1A5 (ASCT2) in the outward-facing conformation. eLife https://doi.org/10.7554/eLife.48120 (2019).

Yernool, D., Boudker, O., Jin, Y. & Gouaux, E. Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431, 811–818 (2004).

Article  CAS  PubMed  Google Scholar 

Canul-Tec, J. C. et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature 544, 446–451 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reyes, N., Ginter, C. & Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462, 880–885 (2009).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif