Unravelling immune microenvironment features underlying tumor progression in the single-cell era

Burdziak C, et al. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science. 2023;380(6645):eadd5327.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Binnewies M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16(3):151–67.

Article  CAS  PubMed  Google Scholar 

Gubin MM, Vesely MD. Cancer Immunoediting in the Era of Immuno-oncology. Clin Cancer Res. 2022;28(18):3917–28.

Article  CAS  PubMed  Google Scholar 

Tomlinson, J.L., J.W. Valle, and S.I. Ilyas, Immunobiology of Cholangiocarcinoma. J Hepatol, 2023.

Massalha H, et al. A single cell atlas of the human liver tumor microenvironment. Mol Syst Biol. 2020;16(12): e9682.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ren X, et al. Insights gained from single-cell analysis of immune cells in the tumor microenvironment. Annu Rev Immunol. 2021;39:583–609.

Article  CAS  PubMed  Google Scholar 

Dagher OK, et al. Advances in cancer immunotherapies. Cell. 2023;186(8):1814-1814.e1.

Article  CAS  PubMed  Google Scholar 

Hirschhorn D, et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell. 2023;186(7):1432-1447.e17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen H, et al. METTL3 Inhibits Antitumor Immunity by Targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022;163(4):891–907.

Article  CAS  PubMed  Google Scholar 

Finotello F, et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019;11(1):34.

Article  PubMed  PubMed Central  Google Scholar 

Allen WE, et al. Molecular and spatial signatures of mouse brain aging at single-cell resolution. Cell. 2023;186(1):194-208.e18.

Article  CAS  PubMed  Google Scholar 

Domínguez Conde C, et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science. 2022;376(6594):eabl5197.

Article  PubMed  PubMed Central  Google Scholar 

Travaglini KJ, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587(7835):619–25.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zheng C, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell. 2017;169(7):1342-1356.e16.

Article  CAS  PubMed  Google Scholar 

Gu S, et al. Significance of intratumoral infiltration of B cells in cancer immunotherapy: from a single cell perspective. Biochim Biophys Acta Rev Cancer. 2021;1876(2): 188632.

Article  CAS  PubMed  Google Scholar 

Wang L, et al. Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment. Gut. 2023;72(5):958–71.

Article  CAS  PubMed  Google Scholar 

Liu Y, et al. Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell. 2022;40(4):424-437.e5.

Article  PubMed  Google Scholar 

Li J, et al. Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity. 2018;49(1):178-193.e7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan Y, et al. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J Hematol Oncol. 2022;15(1):104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalia V, et al. Quiescence of memory CD8(+) T cells is mediated by regulatory T cells through inhibitory receptor CTLA-4. Immunity. 2015;42(6):1116–29.

Article  CAS  PubMed  Google Scholar 

Liu C, et al. Treg Cells Promote the SREBP1-dependent metabolic fitness of tumor-promoting macrophages via repression of CD8(+) T Cell-Derived Interferon-gamma. Immunity. 2019;51(2):381–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sarhan D, et al. Adaptive NK cells resist regulatory t-cell suppression driven by IL37. Cancer Immunol Res. 2018;6(7):766–75.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852–63.

Article  CAS  PubMed  Google Scholar 

Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110(7):2080–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, et al. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19(1):116.

Article  PubMed  PubMed Central  Google Scholar 

Mair F, et al. Extricating human tumour immune alterations from tissue inflammation. Nature. 2022;605(7911):728–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bill R, et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science. 2023;381(6657):515–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nalio Ramos R, et al. Tissue-resident FOLR2(+) macrophages associate with CD8(+) T cell infiltration in human breast cancer. Cell. 2022;185(7):1189-1207.e25.

Article  CAS  PubMed  Google Scholar 

Rao X, et al. NLRP6 is required for cancer-derived exosome-modified macrophage M2 polarization and promotes metastasis in small cell lung cancer. Cell Death Dis. 2022;13(10):891.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gordon SR, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pritchard A, et al. Lung tumor cell-derived exosomes promote M2 macrophage polarization. Cells. 2020;9:5.

Article  Google Scholar 

Tariq M, et al. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol Sin. 2017;38(11):1501–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian HY, et al. Exosomal CXCL14 contributes to M2 macrophage polarization through NF-κB signaling in prostate cancer. Oxid Med Cell Longev. 2022;2022:7616696.

Article  PubMed  PubMed Central  Google Scholar 

Li X, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66(1):157–67.

Article  CAS  PubMed  Google Scholar 

Gomez-Roca CA, et al. Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol. 2019;30(8):1381–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan JM, et al. Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell. 2021;39(11):1479–96.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif