Cancer cell metabolism and antitumour immunity

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  PubMed  Google Scholar 

Izzo, L. T., Affronti, H. C. & Wellen, K. E. The bidirectional relationship between cancer epigenetics and metabolism. Annu. Rev. Cancer Biol. 5, 235–257 (2021).

Article  PubMed  Google Scholar 

Pirozzi, C. J. & Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 18, 645–661 (2021).

Article  CAS  PubMed  Google Scholar 

Kerk, S. A., Papagiannakopoulos, T., Shah, Y. M. & Lyssiotis, C. A. Metabolic networks in mutant KRAS-driven tumours: tissue specificities and the microenvironment. Nat. Rev. Cancer 21, 510–525 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kruiswijk, F., Labuschagne, C. F. & Vousden, K. H. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat. Rev. Mol. Cell Biol. 16, 393–405 (2015).

Article  CAS  PubMed  Google Scholar 

Vitale, I., Shema, E., Loi, S. & Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27, 212–224 (2021).

Article  CAS  PubMed  Google Scholar 

Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

Article  PubMed  Google Scholar 

Petroni, G., Buqué, A., Coussens, L. M. & Galluzzi, L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat. Rev. Drug. Discov. 21, 440–462 (2022).

Article  CAS  PubMed  Google Scholar 

Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug. Discov. 21, 141–162 (2022).

Article  CAS  PubMed  Google Scholar 

Warburg, O., Posener, K. & Negelein, E. Über den stoffwechsel der carcinomzelle [German]. Naturwissenschaften 12, 1131–1137 (1924).

Article  CAS  Google Scholar 

Debnath, J., Gammoh, N. & Ryan, K. M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 24, 560–575 (2023).

Article  CAS  PubMed  Google Scholar 

Kim, J. & DeBerardinis, R. J. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab. 30, 434–446 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kroemer, G., Chan, T. A., Eggermont, A. M. M. & Galluzzi, L. Immunosurveillance in clinical cancer management. CA Cancer J. Clin. 74, 187–202 (2024).

Article  PubMed  Google Scholar 

Klapp, V. et al. The DNA damage response and inflammation in cancer. Cancer Discov. 13, 1521–1545 (2023).

Article  CAS  PubMed  Google Scholar 

Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

Article  CAS  PubMed  Google Scholar 

Voss, K. et al. A guide to interrogating immunometabolism. Nat. Rev. Immunol. 21, 637–652 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bantug, G. R. & Hess, C. The immunometabolic ecosystem in cancer. Nat. Immunol. 24, 2008–2020 (2023).

Article  CAS  PubMed  Google Scholar 

Leone, R. D. & Powell, J. D. Metabolism of immune cells in cancer. Nat. Rev. Cancer 20, 516–531 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

Article  CAS  PubMed  Google Scholar 

Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinfeld, B. I. et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature 593, 282–288 (2021). This article elegantly shows that intratumoural myeloid cells have increased glucose uptake compared with malignant cells.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cascone, T. et al. Increased tumor glycolysis characterizes immune resistance to adoptive T cell therapy. Cell Metab. 27, 977–987.e4 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, D. et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 34, 1312–1324.e6 (2022).

Article  CAS  PubMed  Google Scholar 

Li, W. et al. Aerobic glycolysis controls myeloid-derived suppressor cells and tumor immunity via a specific CEBPB isoform in triple-negative breast cancer. Cell Metab. 28, 87–103.e6 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, L. et al. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α. Cell Metab. 35, 1580–1596.e9 (2023).

Article  CAS  PubMed  Google Scholar 

Galluzzi, L., Kepp, O., Vander Heiden, M. G. & Kroemer, G. Metabolic targets for cancer therapy. Nat. Rev. Drug. Discov. 12, 829–846 (2013).

Article  CAS  PubMed  Google Scholar 

Claps, G. et al. The multiple roles of LDH in cancer. Nat. Rev. Clin. Oncol. 19, 749–762 (2022).

Article  PubMed  Google Scholar 

Elia, I. et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells. Cell Metab. 34, 1137–1150.e6 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quinn, W. J. et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma, J. et al. Lithium carbonate revitalizes tumor-reactive CD8+ T cells by shunting lactic acid into mitochondria. Nat. Immunol. 25, 552–561 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

Article  CAS  PubMed  Google Scholar 

Oshima, N. et al. Dynamic imaging of LDH inhibition in tumors reveals rapid in vivo metabolic rewiring and vulnerability to combination therapy. Cell Rep. 30, 1798–1810.e4 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rundqvist, H. et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife 9, e59996 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, Q. et al. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity. Nat. Commun. 13, 4981 (2022). This report shows that lactate may mediate immunostimulatory effects by promoting CD8+T cell stemness.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumagai, S. et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40, 201–218.e9 (2022).

Article  CAS  PubMed  Google Scholar 

Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

Article  CAS 

留言 (0)

沒有登入
gif